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ABSTRACT OF DISSERTATION

Novel Approaches in Structured Light Illumination

Among the various approaches to 3-D imaging, structured light illumination (SLI)
is widely spread. SLI employs a pair of digital projector and digital camera such
that the correspondences can be found based upon the projecting and capturing of
a group of designed light patterns. As an active sensing method, SLI is known for
its robustness and high accuracy. In this dissertation, I study the phase shifting
method (PSM), which is one of the most employed strategy in SLI. And, three novel
approaches in PSM have been proposed in this dissertation. First, by regarding the
design of patterns as placing points in an N-dimensional space, I take the phase
measuring profilometry (PMP) as an example and propose the edge-pattern strat-
egy which achieves maximum signal to noise ratio (SNR) for the projected patterns.
Second, I develop a novel period information embedded pattern strategy for fast,
reliable 3-D data acquisition and reconstruction. The proposed period coded phase
shifting strategy removes the depth ambiguity associated with traditional phase shift-
ing patterns without reducing phase accuracy or increasing the number of projected
patterns. Thus, it can be employed for high accuracy realtime 3-D system. Then,
I propose a hybrid approach for high quality 3-D reconstructions with only a small
number of illumination patterns by maximizing the use of correspondence information
from the phase, texture, and modulation data derived from multi-view, PMP-based,
SLI images, without rigorously synchronizing the cameras and projectors and cali-
brating the device gammas. Experimental results demonstrate the advantages of the
proposed novel strategies for 3-D SLI systems.

KEYWORDS: Structured light illumination, 3-D reconstruction, period coded phase
shifting, edge-pattern, hybrid system.
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Chapter 1 INTRODUCTION

Three-dimensional (3-D) surface measurement is an area of active research [1], whose

purpose is to measure or analyze a real-world object’s shape and possibly its appear-

ance (i.e. color). The collected data can then be used to construct digital models

useful for a wide variety of applications [2,3]. Many different technologies can be used

for 3-D measurement purposes. Generally, these technologies can be classified into

contact or non-contact categories, where contact scanners probe the subject through

physical touch. A coordinate measuring machine (CMM) is an example of a contact

3D scanner, which is used mostly in manufacturing [4]. By making physical contact

with the scanned object, the act of scanning might modify or damage the target. An-

other disadvantage of CMMs is that they are relatively slow compared to the other

scanning methods [5, 6].

Non-contact 3-D techniques overcome the disadvantages in contact based scanning

by means of either time-of-flight or triangulation. Time-of-flight technology is an

active technique that finds the distance to the target’s surface by measuring the

round-trip time of a pulse of light. Since the speed of light is known, the round-trip

time determines the travel distance of the light, which is twice the distance between

the scanner and the surface. The accuracy of a time-of-flight 3-D scanner depends

on how precisely it can measure the time, where 3.3 picoseconds is the approximate

time taken for light to travel 1 mm [7, 5].

A laser rangefinder only detects the distance of one point in its direction of view.

1



www.manaraa.com

Figure 1.1: Ground-based LiDAR scanners (time-of-flight unless noted as other-
wise) [8, 9, 10,11,12,13,14,15,16].

Thus, the scanner scans its entire field of view one point at a time by changing the

range finder direction of view to scan different points. The view direction of the laser

rangefinder can be changed by either rotating the range finder itself, or by using a

system of rotating mirrors. The latter method is commonly used because mirrors

are much lighter and can, thus, be rotated much faster and with greater accuracy.

Several examples of ground-based LiDAR (single scanning laser) scanners are shown

in Fig. 1.1 [8,9,10,11,12,13,14,15,16].There are also some other techniques or products

based on time-of-flight that indirectly measure the time-of-flight of a flash-like light

source illuminating a large field of view and then capturing the returning light pulse

2
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Figure 1.2: Triangulation based 3-D scanning.

using a traditional CCD camera sensor. [17, 18, 16]. Typical time-of-flight 3-D laser

scanners can measure the distance of 10, 000 ∼ 100, 000 points every second [19,5].

There are many techniques for 3-D scanning that are based on triangulation.

In triangulation based 3-D scanning, 3-D information is computed based on a pre-

calibrated triangulation between two devices [20, 21, 22, 23, 24]. Figure 1.2 shows the

principle of triangulation based 3-D scanning where the two devices are replaced

with their pin hole models. With respect to time-of-flight 3-D scanner, triangulation

scanning tries to exploit the two devices and finds the correspondences of each point

between devices. For example, stereo vision techniques are employing the triangula-

tion between two cameras. A laser scanner is based on the triangulation between a

laser source and a camera.

A laser triangulation scanner shines a laser on the subject and exploits a camera to

look for the location of the reflected laser spot. Depending on how far away the laser

strikes a surface, the laser spot appears at different positions in the camera’s field

of view. After locating the spot in camera space, the camera and the laser emitter

3
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(a) (b)

Figure 1.3: (a)A plush gorilla with shiny hair.(b)3-D reconstruction using stereo
vision. Result is shown with depth rendering.

form a triangle. The length of one side of the triangle, the distance between the

camera and the laser emitter is known. The angle of the laser emitter corner is also

known. The angle of the camera corner can be determined by looking at the location

of the laser spot in the camera’s field of view. These three pieces of information fully

determine the shape and size of the triangle and gives the location of the laser spot

corner of the triangle.

Broadly, triangulation based techniques for 3-D scanning can be classified into

active or passive approaches. Passive approaches do not emit any kind of radiation

themselves, but instead rely on detecting reflected ambient radiation. Most scanners

of this type detect visible light because it is a readily available ambient radiation.

For example, stereo vision is widely studied in computer vision [25, 26, 27]. Two

cameras take pictures of the same scene but from different views of point. A computer

compares the images while shifting the two images together over top of each other to

4
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find the parts that match. The shifted distance between the same object in between

views is called the disparity, at which is used by the computer to calculate the distance

from the object to the cameras [28]. Passive methods can be very cheap, because, in

most cases, they do not need particular hardware. However, the accuracy, compared

to active approaches, is low [29, 24]. As an example, we scanned a plush gorilla as

shown in Fig. 1.3 (a). The 3-D reconstruction result using stereo vision technique

(graph-cuts [30]) is shown in Fig. 1.3 (b). Due to the complicated scene of the plush

gorilla, the quality of the reconstruction in Fig. 1.3 (b) is low.

Triangulation based laser scanner and structured light illumination are typically

employed active triangulation approaches for 3-D surface measurement. In most

cases of laser scanning, a laser stripe, instead of a single laser dot, is swept across the

object to speed up the acquisition process. Thus, the scanning time is fairly long.

To reduce the scanning time, a faster and more versatile method is the projection

of patterns consisting of many stripes at once, or of arbitrary fringes, as this allows

for the acquisition of a multitude of samples simultaneously. Seen from different

viewpoints, the pattern appears geometrically distorted due to the surface shape of

the object [31, 32, 33, 34]. In order to identify the stripes, the projected patterns

are designed such that after capturing images, by the camera, the correspondences

between the camera and the projecting device can be found [35]. And based on this

idea, structured light illumination (SLI) is developed [36,37,38,39].

5



www.manaraa.com

Figure 1.4: SLI was used for jet pilot’s helmets, from Dec. 1954 issue of life magazine.

1.1 Structured light illumination

SLI [40, 41] employs the projection of a group of designed light patterns onto the

target’s surface. By the reflected illumination of the target, the depth information

can be computed. As one of the most accurate non-contact 3D surface measuring

techniques, SLI has many industrial and scientific applications, including human and

computer interfacing, biometrics, 3D conferencing, IC mounting on circuit board,

biomedical, next-gen multimedia and entertainment, motion scanning and tracking,

defect inspection and so on [32, 31, 42, 43, 35, 38, 44]. A cool application of SLI,

reported from the Dec. 1954 issue of life magazine, is shown in Fig. 1.4 where SLI

was used to measure the size and shape of a jet pilot’s head for the purpose of

6
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making custom fitting helmets. Compared to some passive 3D information acquisition

techniques, such as stereo vision, SLI can easily overcome the correspondence problem

between the two devices, which are the camera and the projector in the SLI case, via

active scanning, and obtain accurate depth information through the camera-projector

triangulation.

Reflection model

Generally speaking, the SLI technologies have two parts, codification and de-codification.

In the codification part, all the SLI techniques employ a set, {In : n = 0, 1, ..., N−1},

of designed patterns, such that a point in the projector plane, (xp, yp), is assigned

with coding information Q.

After the set of illumination patterns have been projected upon a target object,

an off-axis camera captures the scene such that the patterns are observed after being

distorted by the surface topology under inspection. The resulting set of captured

images, {Icn : n = 0, 1, ..., N − 1}, can, therefore, be expressed as [45]

Icn = αIn + αβ, (1.1)

where the two-dimensional camera coordinate (xc, yc) has been left out for brevity of

notation for the image terms Icn, α, and β. In Eq. (1.1), α represents the albedo with

α ∈ [0, 1] where 0 is pure black and 1 is pure white. αβ represents the albedo image

from ambient light with intensity β.

Thus, after projecting patterns from the projector and receiving the images {Icn}

in the camera, the de-codification algorithm tries to find out the coded information

7
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Q in the original patterns {In} with the present of albedo, ambient light and noise.

With the epipolar constraint which indicates that when the camera and the pro-

jector view a 3-D scene from two distinct positions, there are a number of geometric

relations between the 3-D points and their projections onto the 2-D images that

lead to constraints between the image points [46, 33], the coding information can be

vertically or horizontally periodic depending on the system structure [47, 48]. The

structured illumination patterns could be spots, stripes, or some other geometric

patterns as long as the coding information can be extracted from the reflected illu-

mination. Some of the recently studied or employed SLI pattern strategies are listed

in Table 1.1.

8



www.manaraa.com

Table 1.1: A Review of Recent Structured Light Patterns.

Technique Technique Realtime 3-D Accuracy Reliability Implementation
Classification reconstruction complexity

One-shot, De Bruijin Y Losing information Sensitive to Low
spatial sequences [49,50,51] inside stripes object color

One-shot, Adaptive structured Y Losing information High Require predicting,
spatial light [52] inside stripes labeling and tracking

One-shot, Composite pattern N Reduced SNR in High Require modulation
temporal [45] different channels and demodulation
One-shot, Color coded [53] Y Low pattern High Low

spatial resolution
One-shot, Laser ray Y Low pattern High Low

spatial matrix [54] resolution
One-shot, view- Viewpoint-coding Y Increasing with High Low

point-coding structured light [55] camera number
One/multi-shot, Color stripe Y Losing information High Low

spatial [56,57] inside stripes
One/multi-pattern, Space-time N High Assumption on Require good techniques
temporal+spatial stereo [58,59] temporal continuity in stereo matching

Multi-pattern, Motion compensation N High High Require stereo matching
temporal+spatial phase-shifting [60] and optimization

Multi-pattern, Stripe boundary Y High Assumption on slow Require segmentation,
temporal+spatial coding [61,62] texture variation tracking and decoding

Multi-pattern, Trapezoidal phase- Y Error due to Introduces Low
temporal shifting [63] image de-focus depth ambiguity

Multi-pattern, Sinusoidal phase- Y High Introduces Low
temporal shifting [29] depth ambiguity

Multi-pattern Hierarchical structured N High Introduces Low
temporal light [64] depth ambiguity

Multi-pattern Two-step triangular- N High Introduces Low
temporal pattern [65] depth ambiguity
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(a) (b)

Figure 1.5: Patterns designed by Zhang and Chen.

One-shot

Generally, all the active 3-D measurement approaches can be classified into: 1) one

pattern strategies, or “one-shot”, and 2) multi-pattern strategies, as we listed some of

the latest developed or employed pattern strategies. Among all the “one-shot” tech-

niques, De Bruijn sequences may be the most used [40,53]. These spatial techniques

define the neighborhood by using pseudo random sequences. But the decoding stage

becomes more difficult as the spatial neighborhood cannot always be identified, and

3D errors can arise. Thus, they are sensitive to object color which is common among

most one-shot strategies [40, 35]. The recent contribution from Zhang et al [49], as

shown in Fig. 1.5 (a), achieves excellent performance by projecting patterns con-

sisted of 125 vertical slits colored by using a De Bruijn sequence of third order and 8

colors (equal adjacent colors in the resulting sequence were eliminated) and inventing

multi-pass dynamic programming [49]. Various other attempts have also been made

to overcome the problems faced by one-shot strategies in order to present a improved

robustness to the scanned scene [53,52,45,54,55,56,57]. Color patterns are typically
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(a) (b)

Figure 1.6: Patterns designed by Koninckx and Guan.

employed to increase the coding density [49, 53, 56, 57], e.g. Fig. 1.5 (b), but, the

shape measurement result is affected, to various degrees, by the variations in the

object’s surface color [66].

A real-time adaptive strategy, developed by Koninckx et al in [52], overcomes

many practical difficulties. By generating better patterns in real time by taking

the properties of the scene and setup into account, as shown in Fig. 1.6 (a), color

coding lines are used to resolves ambiguities due to the periodic stripe pattern (the

binary base stripes). The work is mainly based on binary fringe pattern, which loses

information inside the binary stripes. And the system is a little complex because it

requires predicting, labeling, and tracking scene features.

While most of the one-shot strategies are trying to find correspondence between

camera and projector by spatially coding the neighborhood, Guan et al developed

their composite pattern method, which efficiently combines multi-patterns into a

single projection [45]. As shown in Fig. 1.6 (b), it successfully reduces sensitivity to

ambiguity or albedo. However, the robustness is improved at a cost of accuracy due
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to the reduced Signal to Noise Ratio (SNR) in each modulation channel.

An interesting approach has been proposed by Young et al [55]. By using a high

frequency stripe pattern and placing multiple cameras in carefully selected locations

where the epipolar projection in each camera can be made to mimic the binary encod-

ing patterns normally projected over time. Thus, they achieve the 3-D reconstruction

distinguishably from other techniques, but the accuracy of this approach is strongly

related with the number of cameras.

Although the above innovations promise robust applications, limitations of these

method still exist. One is the trade-off between reliability and accuracy. Since ad-

jacent color/intensity stripes/dots should have enough spectral difference, people

have to use a limited number of color/intensity stripes or apply them periodically

which produces either stripe ambiguities or rough resolution [66, 53]. In general, the

more patterns are used in a structured light system, the better accuracy that can be

achieved. Based on the information from only one pattern, it is hard to achieve both

high accuracy and reliability.

Multi-pattern

Compared to one-shot strategy, multi-pattern strategies are well known for their

robustness to object color and measurement accuracy. Mostly, the multi-pattern

strategies are based on temporal coding, where a set of patterns are successively

projected onto the measuring surface. The codeword for a given pixel is usually

formed by the sequence of illumination values for that pixel across the projected

patterns. The bits of the codewords are multiplexed in time. This kinds of pattern

12
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strategies can achieve high accuracy in their measurements due to the facts: fist, as

multiple patterns are projected, the codeword basis tends to be small (usually binary)

and, therefore, a small set of primitives is used, which are easily distinguishable among

each other. Moreover, a coarse-to-fine paradigm is followed, where the position of a

pixel is encoded more precisely as the patterns are successively projected [40,35].

During the last 20 years, lots of techniques based on multi-patterns have ap-

peared. Many of these techniques can be classified as: (i) techniques based on binary

codes which project sequences of binary patterns in order to generate binary code-

words [67, 68], (ii) techniques based on n-ary codes which are a basis of n primitives

used to generate the codewords [69], (iii) Phase shifting method (PSM) which involve

projecting the same pattern, but shifting it in a certain direction in order to increase

resolution [70,71,72,24]. Among these muli-patterns approaches, PSMs exploit higher

spatial resolution as they project a periodic intensity pattern several times by shifting

it in every projection. And PSMs achieve higher accuracy.

Typically, PSMs project a set of time-multiplexed patterns, {Ibn : n = 0, 1, ..., N −

1}, onto a target object such that an off-axis imaging sensor observes the scene

and captures the wave patterns distorted by the surface topology under inspection.

Generally, the patterns {Ibn} are designed as

Ibn(xj, yj) = A+Bs(xj, yj), (1.2)

where A is a temporal DC value, B is the amplitude (or projector modulation) value

of a periodical signal function s(xj, yj). The coordinate (xj, yj) is the corresponding

coordinate in the projector. The captured images, {Icn : n = 0, 1, ..., N − 1}, are then

13
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denoted as

Icn(xc, yc) = α(xc, yc)Ibn(xj, yj) + α(xc, yc)β(xc, yc), (1.3)

where the superscript c indicates that Icn is now in the camera space and (xc, yc)

is the two-dimensional camera coordinate [45]. In Eq. (1.3), α(xc, yc) represents

the albedo with α(xc, yc) ∈ [0, 1] where 0 is pure black and 1 is pure white. The

term, α(xc, yc)β(xc, yc), represents the albedo image from ambient illumination with

intensity β(xc, yc).

Through a decoding function and a phase unwrapping algorithm, the phase Φ

that represents the coordinate of xj or yj, can be obtained from the “wrapped” (or

coded) phase φw which is expressed as

φw(xc, yc) = g

[
U(xc, yc)

V (xc, yc)

]
, (1.4)

where

U(xc, yc) =
N−1∑
n=0

anI
c
n(xc, yc), (1.5)

and

V (xc, yc) =
N−1∑
n=0

bnI
c
n(xc, yc). (1.6)

The terms an and bn are two coefficients in summations such that, in U(xc, yc) and

V (xc, yc), the terms of β(xc, yc) and the DC value A in images are canceled, while

the division between the two summations cancels the terms of α(xc, yc). The term

g(·) is a function that estimates the phase values φw(xc, yc) ∈ [0, 2π) out of image

intensity values. As we can see, the PSMs are trying to solve the Eqs. (1.1) and

14
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(1.4) and calculate the coding information. To do so, at least three patterns should

be projected [45], since there are three unknown parameters, namely α, β and Q.

In summary, there are a variety of different designed light pattern strategies.

Among these strategies, PSM, which project a pattern several times by shifting it

spatially in every projection, are typically used [40, 35, 29, 70, 24]. In contrast to

patterns based on binary code [67, 68] and n-array [73], PSM overcomes the discrete

nature of patterns. And due to the fact that the pattern resolutions are exponentially

increasing among the coarse-to-fine light projections and the fringe gap tends to 0,

the resolution of PSM is greatly improved [40].

1.2 Phase shifting methods

Following, we will review and discuss some of the latest developed and used PSM

strategies. In order to simplify the discussion, the patterns and techniques are pre-

sented in a typical 8-bits gray scale projector with pattern height of 1024. And all

the patterns are unit-frequency.

Phase measuring profilometry

Among the many proposed SLI methods, the technique of Phase Measuring Profilom-

etry (PMP) is one of the most widely used and precise strategies [70, 74, 75, 76, 77].

The canonical PMP technique employs a set, {In : n = 0, 1, ..., N − 1}, of sinusoidal

wave patterns such that at the point (xp, yp), in projector space, the intensity value

is assigned as:

In(xp, yp) = A+B cos(Φ(yp)− 2π

N
), (1.7)
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Figure 1.7: Cross sections of 3-pattern unit frequency PMP strategy.

where A is the temporal DC value, which is normally 0.5, and B is the amplitude

of the temporal AC signal, which is also normally 0.5. Thus, the sinusoidal signal

covers the entire dynamic range of the projector [0, 1]. The term Φ(yp) is the phase

information and is designed according to:

Φ(yp) =
2πFyp

H
, (1.8)

where H is the pattern height (number of points in pattern) and F is the number

of periods. Note the dependence of the phase term, Φ(yp), on yp as this is the

parameter that will be used when triangulating with the camera, which is assumed

to be positioned vertically above/below the projector. Thus, we denote In(xp, yp) as

In(yp).

After projecting the patterns, the reflection process can be expressed as:

Icn(xc, yc) = α(xc, yc)[A+B cos(Φ(yp)− 2π

N
) + β(xc, yc)], (1.9)

where (xc, yc) is the two-dimensional camera coordinate, α(xc, yc) represents the

albedo within [0, 1] where 0 is pure black and 1 is pure white, and α(xc, yc)β(xc, yc)

is the albedo image from ambient illumination with intensity β(xc, yc). Thus in the
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Figure 1.8: 3-D reconstruction using PMP. Result is shown with depth rendering.

process of reflection, the albedo and ambient illumination effects are added into the

patterns. The phase information Φ(yp) is then obtained from a decoding function

expressed as:

φ(xc, yc) = arctan

[∑N−1
n=0 I

c
n(xc, yc) sin(2πn

N
)∑N−1

n=0 I
c
n(xc, yc) cos(2πn

N
)

]

= arctan

[
α(xc, yc)B sin(Φ(yp))

α(xc, yc)B cos(Φ(yp))

]
. (1.10)

The decoding function removes the effects of albedo and ambient illumination such

that the designed phase information is recovered. Generally, if a high frequency signal

is employed, the obtained phase φ, from Eq. (1.10), needs to be further “unwrapped”

into unit frequency Φ in order to find the unique correspondence over the full res-

olution. Once Φ(xc, yc) is obtained, the 3-D world coordinates of a point can be

calculated from (xc, yc,Φ(xc, yc)) in a pre-calibrated system.

To solve Eq. (1.10), at least 3 patterns should be projected and captured since

there are Φ(yp), α(xc, yc), and β(xc, yc) unknowns in Eq. (2.3). The cross sections of
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Figure 1.9: The trapezoidal pattern strategy designed by Huang.

three pattern PMP are shown in Fig. 2.1. As the most widely used pattern strategy,

PMP is easy to implement and well developed for N > 3 patterns. The continu-

ous smooth sinusoidal patterns are insensitive to blurring caused by an out of focus

lens [78, 29]. An example of 3-D reconstruction of the plush gorilla (Fig. 1.3 (a)) is

shown in Fig. 1.8. Compared to the result using stereo vision (Fig. 1.3 (b)), the 3-D

reconstruction from PMP is greatly improved.

Trapezoidal pattern

The Trapezoidal Pattern (TPP) is proposed by Huang et al [63]. This method uses

three patterns coded with phase shift trapezoidal shaped gray levels [63], as shown

in Fig. 1.9. For each point (xc, yc) of captured images, the coding information Q is

obtained by using the following equation:

Q = 2round(
K − 1

2
) + (−1)K+1 I

c
med − Icmin
Icmax − Icmin

, (1.11)

where Icmax, I
c
med and Icmin are respectively the maximum, median and minimum

intensities of the three received images, and K = 1, 2, ..., 6 is the region number
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Figure 1.10: The 2 + 1 pattern strategy designed by Wizinowich.

determined by comparing the three intensities [63]. The value of Q ranges from 0 to

6. The 3-D coordinate is obtained similarly as PMP.

As claimed by Huang et al, the TPP is 6 time better than three-pattern PMP.

But due to the fact that the camera devices tend to integrate over a certain area

such that pixel values are affected by its neighbors [78], the the inflection points of

patterns are not as sharp as theoretical results. However, because of the intensity

ratio based de-codification (Eq. (1.11)), the coding information Q is not sensitive to

the blurring effect.

2+1 method

The 2 + 1 phase shift patterns employ two sinusoidal patterns with a phase shift of

π
2

and a uniform flat pattern [79], as shown in Fig. 1.10. The coding information is

calculated through

Q = atan

[
Ic0 − Ic2
Ic1 − Ic2

]
, (1.12)

where the value of Q ranges from 0 to 2π. The 3-D coordinate is obtained similarly

as PMP. This method, consisting totally three patterns, is proposed by Wizinowich
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Figure 1.11: The triangular pattern strategy designed by Jia.

in [80] and lately developed by Zhang and Yau in [79]. In contrast to PMP, the

method developed by Zhang and Yau is more sensitive to noise due to less number

of data frames. However, it is more robust to motion and vibration, i.e. the faster

geometric shape changes [79,80].

Triangular pattern

Different from above strategies, the phase shift triangular pattern (TGP) strategy

consists only two patterns [81,65], as shown in Fig. 1.11. After receiving the patterns

from camera, the Q is obtained as

Q = 2round(
K − 1

2
) + (−1)K+1 |Ic0 − Ic1|

Im
, (1.13)

where Q ranges from 0 to 4, and K = 1, 2, 3, 4 is the region number determined

by analyzing a small neighborhood of each point. Im is the modulation intensity

computed as

Im = Imax − Imin, (1.14)
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Figure 1.12: The fast three step pattern strategy designed by Huang.

Figure 1.13: An SLI system developed by Liu and Wang.

where Imax and Imin are the maximum and minimum intensities of projected patterns

I0 and I1. Thus, instead of from the received images, Im is actually obtained from the

projected patterns. This makes the TGP sensitive to the albedo of scanned object,

since in Eq. (1.14) Ic0 − Ic1 contains the information of albedo (see in Eq. (1.1)) but

Im does not. In order to make TGP work under the presence of non-uniform albedo

and ambient light, one more pattern should be projected.

There are some other PSMs which are similar as or developed from the above
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strategies. For example, the fast three step method, as shown in Fig. 1.12, used by

Huang et al [82] projects the sinusoidal phase shift pattern as PMP. But instead of

using Eq. (1.10), it uses Eq. (1.11) for de-codification. And in [78], Gühring proposed

a new method called line shifting which combines binary and sinusoidal phase shift

pattern. This combination overcomes some problems in PSM, i.e. reconstructing of

sharp change albedo region, but it results a large number of patterns (up to 32). An

SLI system developed by Liu and Wang is shown in Fig. 1.13.

1.3 Problems in phase shifting methods

Although the PSMs are accurate and robust to various scenes. In practice, due to

the system noise, the non-linear response of devices (gamma) [83], and other factors,

in the PSMs, there are still problems that needs to be solved.

Pattern efficiency

In PSMs, due to the exist of noise, higher accuracy of the 3-D reconstructions can

be achieved when more patterns are projected out. However, for different pattern

strategies, using the same number of patterns, the achieved accuracy is not the same.

In other words, the pattern efficiency is different. In general, PSMs calculate the

phase, which can be regarded as a corresponding map between projector and camera,

temporally for each valuable pixel in the camera, and have the advantages of less

number of patterns and fast processing speeds because the calculation of the tem-

poral intensities is rather simple. And no point matching or image enhancement is

required [63,74]. They are also resistant to target surface albedo variations and am-
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(a) (b)

Figure 1.14: 3-D reconstruction of a white model, Alice, using 3-pattern unit fre-
quency PMP where the error caused by noise is shown. (a) Front view of the recon-
struction. (b) Top view of the reconstruction.

bient light. However in practice, error is introduced from camera noise [74], projector

noise [45, 84], and ambient light noise [45] as well as other sources [85, 86, 87]. And

these methods show large impact of noise [63]. On the other hand in order to scan

dynamic scenes with moving objects, researchers [63,58,64,60,29] have employed high

speed components to build real-time acquisition systems that attempted, as much as

they could, to limit the number of projected patterns in order to minimize total scan

time. Here, we first employed 3-pattern unit frequency PMP, which is the minimum

number of patterns for PMP, to scan a white model, Alice. The 3-D reconstruction

result is shown in Fig. 1.14 where the noisy reconstruction is due to the noise. Further,

5-pattern unit frequency PMP was employed and the result is shown in Fig. 1.15. As

shown, with two more patterns, the improvement of 3-D reconstruction, which is only

22.54% reduction of the standard deviation of reconstruction error, is not obvious.

23



www.manaraa.com

(a) (b)

Figure 1.15: 3-D reconstruction of a white model, Alice, using 5-pattern unit fre-
quency PMP where the error caused by noise is shown. (a) Front view of the recon-
struction. (b) Top view of the reconstruction.

It is essential to study the pattern efficiency of the PSM’s patterns such that the

best measurement accuracy can be achieved with a certain number of patterns. With

the noise in practical systems, it is desirable to define a parameter that measures the

Signal to Noise Ratio (SNR) of the PSM patterns. And further by maximizing the

SNR, the patterns can be optimized such that with a certain number of patterns

N the noise in 3-D results can be minimized. In [69], Horn and Kiryati proposed a

method for the optimal design of n-ary patterns. The design of N projection patterns

with pattern height H turns out to be equivalent to the placement of H points in a

N dimensional space. Thus, the authors proposed the use of space filling curves, such

as Hillbert curves, for defining the codewords to maximize SNR. But, the principles

and constrains of n-ary techniques are different from those of PSM such that Horn

and Kiryati’s optimization can not be applied to PSM, and little work in optimization
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of PSM has been done by now.

Depth ambiguity

For commonly employed PSMs [40], the reconstruction is derived from the observed

phase distortions caused by the wrapping of the projected stripes around an object.

Because PSMs involve a series of time-multiplexed patterns, it is not commonly asso-

ciated with scanning dynamic scenes with moving objects. Of the PSMs, video-rate

surface reconstructions are possible using high speed imaging equipment [63, 58, 64,

60, 29, 88]. Among these high speed systems, since PSMs are sensitive to noise, high

frequency pattern strategies are popular approaches in order to improve the accuracy

of measurement.

For PSMs, measurement accuracy can be improved with an increase in the number

of light pattern periods projected per frame of video. However in order to build a full

and one-to-one correspondence map between projected patterns and captured images,

captured high frequency phase data has to be unwrapped into a single period [29].

The depth ambiguities that this process entails represents a major obstacle [89] as

illustrated in Fig. 1.16 where Fig. 1.16 (a) shows two isolated surfaces where no

method of spatial unwrapping can uniquely determine the period numbers in the

captured image. Figure 1.16 (b) shows a depth discontinuity, parallel to the stripes,

resulting in a continuity artifact in phase such that two different period numbers

appear as the same one in the captured image.

Various methods have been investigated to enhance the reliability of phase un-

wrapping through the inclusion of extraneous spatial information such as through
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Figure 1.16: Illustration of depth ambiguities in high-frequency phase shifting SLI
showing the scanned geometries and the captured images for (a) disconnected surfaces
and (b) a surface step-edge.

branch cut [89], discontinuity minimization [90], agglomerative-clustering [91], or

least-squares [92]. But according to Saldner and Huntley [93], these approaches alone

cannot solve the difficulties presented in Fig. 1.16. On the other hand, temporal

unwrapping approaches [93, 94] have been proposed to achieve reliable unwrapping,

but the use of extra patterns to remove the depth ambiguities is, again, unappealing

for real-time acquisition.

Thus, phase information is the only signal coded into the patterns. The pixels of
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the projector, having the same phase but different periods, project the same intensity

values. In order to unwrap high frequency, either the algorithms need to “count” the

period number from one direction to the other using a spatial approach, or extra

patterns need to be projected to obtain a reference unit frequency signal (or period

cue). Thus although the unwrapping problem has been studied for over 20 years [95],

solutions are not satisfying in a real-time system. In fast SLI applications, spatial

unwrapping methods are preferred because they use fewer patterns, but as reported

by Zhang [96] for the phase unwrapping of exaggerated and difficult facial expressions,

the failure rate of the scan-line algorithm was more than 86%.

Gamma, multi-light-path and others

Compared to passive methods like stereo-vision, SLI is known for its robustness and

high accuracy [40, 33, 35, 34]. On the other hand, as SLI involves a scanning process

with a series of time-multiplexed patterns, its application is limited to moving targets,

where the standard solution is to drive the camera/projector pair at such high frame

rates that the amount of object motion is small over the pattern set. Hence, there is

general need to reduce the overall pattern number for these applications.

Among efforts to achieve high speed and high accuracy 3-D data acquisition, tem-

poral multiplexed projection [29, 97] and color multiplexed [49, 53] sequences have

been extensively studied to reduce the number of illumination patterns. However,

the reduced number of illumination patterns tends to yield poor quality 3-D recon-

structions [35, 29, 45]. Problems associated with SLI that are particular acute when

using a low number of patterns include:
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1. Increased sensitivity of phase data to noise and distortions in areas of high

contrasted texture or depth [49,52,98].

2. Phase distortion in the presence of multi-light-path where the phase of one point

is disturbed by the light reflected from other points on the target surface [99].

3. The sensitivity of the phase reconstruction in the presence of camera, projector

and ambient light noise [74].

4. Phase distortion caused by non-linear response curves (gamma) in the projector

and/or camera [84,83].

5. Phase distortion caused by projector flicker associated with out-of-phase pro-

jector/camera pairs [45].

Without increasing the pattern number, some of these issues can be addressed through

simple camera/projector calibration [84, 83] and hardware synchronization [29], but

the requirement of a hardware connection may complicate the use of commodity

hardware that lacks a synchronization signal interface. The fringe pattern in Fig. 1.8 is

due to the gamma error. Another example of gamma distortion is shown in Fig. 1.17.

1.4 Contributions

In general, all PSMs are well known for their high resolution and accuracy when

many patterns are projected. However, in order to achieve high speed, the number of

patterns should be limited to as few patterns as is necessary, but limiting the number

of patterns makes PSM methods especially susceptible to reconstruction errors from
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(a) (b)

Figure 1.17: 3-D reconstruction of a flat textured board where the error caused by
gamma and noise is shown. (a) Front view of the reconstruction. (b) Top view of the
reconstruction.

sensor noise. In this dissertation, we study the noise in PSM systems and focus on

the improvement of pattern efficiency in PSMs such that we maximize the achievable

reconstruction accuracy using fewer patterns. In order to achieve this goal, in Chapter

II, we take one of the most used strategy, PMP, as an example and illustrate the

maximization of pattern SNR such that the pattern efficiency can be improved. By

regarding the design of an N pattern strategy as placing points in an N-dimensional

coding space, we define the computational length in the N-dimensional space and

further mathematically derive the SNR which is related to the computational length

and number of periods. Then, without introducing ambiguity of high frequency, we

propose the edge-pattern strategy which maximizes the computational length and

number of periods for different numbers of patterns (≥ 3).

The SNR improvements from edge-pattern to PMP increase with the number

of patterns, which indicates the lower pattern efficiency of PMP with more number

of patterns. Experimental results further demonstrate the high SNR of proposed
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(a) (b) (c)

(d) (e) (f)

Figure 1.18: 3D reconstructions of Alice. Results are shown with depth rendering. (a)
Reconstruction using traditional 3 pattern PMP. (b) Reconstruction using traditional
4 pattern PMP. (c) Reconstruction using traditional 5 pattern PMP. (d) Reconstruc-
tion using 3 pattern E-P. (e) Reconstruction using 4 pattern E-P. (f) Reconstruction
using 5 pattern E-P.

pattern such that more accurate 3-D results can be achieved using less number of

patterns. An example of 3-D reconstructions using the proposed edge-pattern strat-

egy and traditional PMP with the same number of patterns is shown in Fig. 1.18.

Specifically, for 3 pattern strategies, the proposed pattern strategy improves the SNR

by 1.2362 times, whereas the improvement is as high as 13.6027 times for 5 pattern

strategies. Detailed analysis and discussion of the edge-pattern strategy will be pre-

sented in Chapter II.

Now another way that we can reduce the effects of system noise on PSM recon-
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Figure 1.19: Three white boards were scanned using PCPS. (a) The wrapped phase
image. (b) The phase image after initial decoding. (c) The period cue image. (d) The
phase values on the 500th column of (a). (e) The phase values on the 500th column
of (b). (f) The phase values on the 500th column of (c).

structions is to increase the frequency of patterns, but this introduces phase ambigu-

ities, as illustrated in Fig. 1.16. So in order to eliminate these ambiguities, Chapter

III defines a spatial intensity efficiency measure that, for those pattern sets with a

spatial intensity efficiency of less than 100%, without reducing the SNR of original

high frequency signal, we encode the period cue into the projected pattern set such

that each period, of the multi-period pattern, is uniquely identifiable. This chapter

further introduces pattern entropy as a separate measure from which one can optimize

the embedded period cue. In combination, the proposed method, period coded phase

shifting, can unwrap high frequency phase information and achieve high measurement

precision without increasing the number of projected patterns and, therefore, has sig-

nificant benefits when scanning moving objects. This chapter, further, introduces a
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Figure 1.20: Schematic diagram of a multi-camera and multi-projector 3-D measure-
ment system.

noise model, verified by experiment, to demonstrate the high measurement accuracy

of the proposed approach.

Finally, a prototype system is demonstrated that can achieve 120 fps at 640×480

resolution for 3-D data acquisition and reconstruction. An example is shown in

Fig. 1.19, where three separate white foam boards were carefully placed and scanned

such that the left-most board was isolated from two boards otherwise positioned

to create a phase ambiguity. Figs. 1.19 (c) and (f) show that the embedded unit

frequency signal is successfully obtained such that the proposed approach in Chapter

III works correctly in situations like Fig. 1.16 where spatial unwrapping fails [93]

and temporal approaches only work by projecting additional patterns [96]. Detailed

analysis and discussion of the period coded phase shifting method will be presented

in Chapter III.
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Figure 1.21: (a) A textured cartoon giraffe and a white space shuttle model. (b),
(c) and (d) are zoomed-in and rotated views of (f), (g) and (h), respectively. (e)
Depth rendering reconstruction by using stereo vision technique (with the graph-
cut algorithm for 7 iterations). (f) Depth rendering reconstruction by using SLI
technique (with 3 high frequency PMP patterns). (g) Depth rendering reconstruction
by using SLI technique (with 30 high frequency PMP patterns). (h) Depth rendering
reconstruction by using the hybrid approach (with 3 high frequency PMP patterns).
(i), (j) and (k) are zoomed-in and rotated views of (f), (g) and (h).

In order to improve SNR and also reduce the reconstruction error cost by gamma,

In Chapter IV, I proposed a hybrid approach for high accurate 3-D reconstruction

which combines the SLI and stereo vision techniques. Generally, SLI is a method

of range sensing involving the projection of a series of light patterns and allowing

a camera to extract range data based on pattern distortions; whereas, stereo-vision

reveals depth through building correspondences between textured images recorded

simultaneously by two or more cameras. By employing multiple cameras, structured
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Figure 1.22: 3-D reconstruction using hybrid approach. Result is shown with depth
rendering.

light illumination can generate pattern phase/modulation and object texture data.

The hybrid 3-D reconstruction framework achieves the 3-D reconstruction through

phase-modulation-texture data fusion under temporal multiplexed illumination. The

proposed scheme consists of, first, using phase data to derive initial correspondences

across cameras. Second, texture data is used to eliminate correspondence ambiguities.

Third, modulation data is used to estimate correspondence error ranges. Finally,

Kullback-Leibler divergence refinement, based on the derived phase error models,

is performed to reduce mis-registration among images. Using only a small number

of light patterns, the presented approach significantly reduces measurement errors

versus traditional structured-light methodologies while being insensitive to gamma

distortion and projector flicker.

Experimental results demonstrate these advantages in terms of enhanced 3-D

reconstruction performance and robustness against noise, distortions, and conditions
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of texture and contrast. An example of 3-D reconstructions using the proposed hybrid

approach is shown in Fig. 4.22 which demonstrates the improved performance of

the hybrid approach in high and low textured environments and in multi-light-path

regions. The plush gorilla of Fig. 1.3 (a) was also reconstructed using the hybrid

approach. The result is shown in Fig. 1.22. Compared to the reconstructions using

stereo vision (Fig. 1.3 (b)) and PMP (Fig. 1.8), the result from hybrid approach is

greatly improved. Detailed analysis and discussion of the hybrid approach will be

presented in Chapter IV.

At last in Chapter V, the conclusion and future work are given. For the edge-

pattern strategy proposed in Chapter II, theoretically, the SNR is improved by 1.2381

times when using three component patterns and 15.5421 times when using five pat-

terns. In Chapter III, the PCPS embeds the second signal such that PCPS can

successfully unwrap high frequency phase information and achieve high measurement

precision without increasing the number of projected patterns and, therefore, has sig-

nificant benefits when scanning moving objects. The hybrid 3-D framework developed

in Chapter IV combines the SLI and stereo vision techniques such that, after per-

forming the proposed Kullback-Leibler divergence refinement, the root-mean-squared

(RMS) registration error is 1/26th that of conventional SLI. In Chapter V, I also list

the future work of edge-pattern, PCPS, and Hybrid approach and propose a PSM

pattern strategy with only 2 or even 1 pattern.

In final summary, minimizing the number of component patterns, without in-

creasing the effects of noise, is a chief goal for structured light illumination system

design. As such, this dissertation focused on the efficiency of phase shifting pat-
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terns where traditional pattern strategies were divided into two parts: codification

and de-codification. For codification, a theoretical definition of pattern efficiency was

proposed where it was shown that the efficiencies of most patterns of PSMs do not

reach 100%. Thus, it becomes possible to employ the remaining dynamic range of

the projector to develop better pattern strategies. An example is the edge-pattern

developed in chapter II where I demonstrated that by only changing the codification,

could the SNR be improved. Another example to employ the remaining dynamic

range for codification was proposed in chapter III where a period coded codification

and its specified de-codification were designed such that two kinds of signals could

be extracted from one projected group of patterns. Other functions may also be

achieved through different assembly of codifications and de-codifications. An alter-

native approach to improve the efficiency of the pattern was proposed in chapter IV.

Furthermore by introducing extra devices into an SLI system, more information be-

comes available, which can be employed to improve the 3-D reconstruction without

projecting more patterns. In the future, the efficiency of a particular device should

also be analyzed. The problem of how much information can be brought by employing

extra devices and how to use this extra information should be studied.
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Chapter 2 MAXIMIZATION SNR PATTERN STRATEGY

After over 20 years development, many PSMs have been explored and studied. As

we reviewed in Chapter I, the most employed PSMs include: Phase Measuring Pro-

filometry (PMP) [70], trapezoidal pattern strategy [63], 2 + 1 pattern strategy [79],

and triangular pattern strategy [81]. For these PSMs, trapezoidal and 2 + 1 pat-

tern strategies project 3 patterns, triangular pattern strategies projects 2 patterns

while sacrificing robustness to object albedo. PMP strategies, alternatively, have

been developed for various numbers of component patterns (≥ 3).

With the aim of defining and maximizing the SNR for PSMs, this chapter takes

one of the most employed PMP strategies and illustrates the process of optimizing

the patterns. Firstly, we present a short overview of the PMP strategy. By regarding

the design of N patterns as placing points in N-dimensional space (coding space),

we analyze the PMP patterns, the reflection process and traditional high frequency

behaviors in coding space. Further, the SNR is derived mathematically

showing that, among all the coefficients in PSM pattern design, there are two

that are directly related to the SNR of patterns. Then, we propose the edge-pattern

strategy for various numbers of patterns (N ≥ 3) which maximizes the two coefficients

such that the pattern SNR is maximized. The SNR improvements from edge-pattern

to PMP increase with the number of patterns, which indicates the lower pattern

efficiency of PMP for larger N. Specifically, for 3 pattern strategies, the edge-pattern

theoretically improves the SNR by 1.2381 times, whereas the improvement is as high
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as 15.5421 times for 5 pattern strategies. Experimental results demonstrate that

higher SNR is achieved by applying the edge-pattern compared to PMP strategy.

2.1 Phase measuring profilometry

Among the many proposed SLI methods, the technique of Phase Measuring Profilom-

etry (PMP) is one of the most widely used and precise strategies [70, 74, 75, 76, 77].

The canonical PMP technique employs a set, {In : n = 0, 1, ..., N − 1}, of sinusoidal

wave patterns such that at the point (xp, yp), in projector space, the intensity value

is assigned as:

In(xp, yp) = A+B cos(Φ(yp)− 2π

N
), (2.1)

where A is the temporal DC value, which is normally 0.5, and B is the amplitude

of the temporal AC signal, which is also normally 0.5. Thus, the sinusoidal signal

covers the entire dynamic range of the projector [0, 1]. The term Φ(yp) is the phase

information and is designed according to:

Φ(yp) =
2πFyp

H
, (2.2)

where H is the pattern height (number of points in pattern) and F is the number

of periods. Note the dependence of the phase term, Φ(yp), on yp as this is the

parameter that will be used when triangulating with the camera, which is assumed

to be positioned vertically above/below the projector. Thus, we denote In(xp, yp) as

In(yp).

After projecting the patterns, the reflection process can be expressed as:

Icn(xc, yc) = α(xc, yc)[A+B cos(Φ(yp)− 2π

N
) + β(xc, yc)], (2.3)
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Figure 2.1: Cross sections of 3-pattern unit frequency PMP. The pattern height is
1024.

where (xc, yc) is the two-dimensional camera coordinate, α(xc, yc) represents the

albedo within [0, 1] where 0 is pure black and 1 is pure white, and α(xc, yc)β(xc, yc)

is the albedo image from ambient illumination with intensity β(xc, yc). Thus in the

process of reflection, the albedo and ambient illumination effects are added into the

patterns. The phase information Φ(yp) is then obtained from a decoding function

expressed as:

φ(xc, yc) = arctan

[∑N−1
n=0 I

c
n(xc, yc) sin(2πn

N
)∑N−1

n=0 I
c
n(xc, yc) cos(2πn

N
)

]

= arctan

[
α(xc, yc)B sin(Φ(yp))

α(xc, yc)B cos(Φ(yp))

]
. (2.4)

The decoding function removes the effects of albedo and ambient illumination such

that the designed phase information is recovered. Generally, if a high frequency signal

is employed, the obtained phase φ, from Eq. (2.4), needs to be further “unwrapped”

into unit frequency Φ in order to find the unique correspondence over the full res-

olution. Once Φ(xc, yc) is obtained, the 3-D world coordinates of a point can be

calculated from (xc, yc,Φ(xc, yc)) in a pre-calibrated system.

To solve Eq. (2.4), at least 3 patterns should be projected and captured since there
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Figure 2.2: 3-pattern PMP in three dimensional coding space.

are Φ(yp), α(xc, yc), and β(xc, yc) unknowns in Eq. (2.3). The cross sections of three

pattern PMP are shown in Fig. 2.1. As the most widely used pattern strategy, PMP

is easy to implement and well developed for N > 3 patterns. The continuous smooth

sinusoidal patterns are insensitive to blurring caused by an out of focus lens [78,29].

N-dimensional coding space

In this chapter, the problem of codification for N patterns PMP with pattern height

H is regarded as the placement of H points in the N-dimensional coding space RN .

Thus, the patterns {In : n = 0, 1, ..., N−1} become points (I0, I1, ..., IN−1) in RN . For

3-pattern PMP, the visualization of the patterns in R3 is shown in Fig. 2.2 where are

total H points on the curve, corresponding to the H points in projector space. Each

point P , in RN , represents a temporal intensity sequence (I0, I1, ..., IN−1) projected

from a pixel of the projector.
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In order to analyze the reflection process (Eq. (2.3)) and the decoding function

(Eq. (2.4)) in RN , we propose the concepts of computational center and length where

for a N -pattern PMP strategy, the computational center O is defined as:

O(o0, o1, ..., oN−1) =
(

lim
B→0

I0, lim
B→0

I1, ..., lim
B→0

IN−1

)
, (2.5)

where {In} is defined in Eq. (2.1). The computational center O is the point in RN

when the temporal AC component of the patterns goes to 0. For 3-pattern PMP, the

O point is (0.5, 0.5, 0.5) as shown in Fig. 2.2.

In RN , we regard the vector from O to a point P as the computation vector
−→
OP .

The computational length, L, of
−→
OP in RN is then defined as:

L(yp) =

{
N−1∑
n=0

[In(yp)− on]2
} 1

2

, (2.6)

where {yp : 0, 1, ..., H} is the index of points in RN , which corresponds to yp in

projector space. The computational length, L, is defined as the distance between

each point P and the point O. For 3-pattern PMP, the pattern length is 0.6124,

which is the same for all H points such that the curve of 3-pattern PMP in R3 is a

circle. We denote the point with Φ = 0, on the circle, as P0. The phase Φ value of P

is then the angle between
−−→
OP0 and

−→
OP , as shown in Fig. 2.2.

Reflection process and ambiguous high frequency

By projecting the patterns, the received images are affected by the albedo and ambient

illumination as given in Eq. (2.3). In Fig. 2.3, a computational vector
−→
OP is projected

out, and the influence from albedo is equivalent to a “scaling” of
−→
OP . As shown in

Fig. 2.3, the vector vector
−→
OP is scaled to

−−−→
OαPα due to the albedo effect, and during
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Figure 2.3: Reflection process in coding space RN .

this linear scaling process, the length of
−−−→
OαPα is changed. However, the direction of

−−−→
OαPα remains the same.

On the other hand, the influence from ambient illumination is equivalent of a

“shifting” process of
−−−→
OαPα. As in Fig. 2.3, the vector

−−−→
OαPα is further shifted to

−−−−−→
OαβPαβ because of the ambient illumination. In the case, the intensities of Oαβ and

Pαβ stay within the dynamic range of the camera. During this shifting process, both

the length and direction of
−−−−−→
OαβPαβ are still unchanged.

After capturing the scaled and shifted vector
−−−−−→
OαβPαβ in the camera, the decoding

function, Eq. (2.4), calculates the angle between
−−−−−→
OαβPαβ and

−−→
OP0 where P0 is the

point with Φ = 0. Since the reflection process keeps the direction of
−→
OP , the obtained

phase value equals to Φ in Fig. 2.2.

If a high frequency phase with F > 1 is encoded, the computational vector
−→
OP

revolves round the computational center O for F times. During de-codification, not

only should the algorithm calculate the angle φ ∈ [0, 2π) between
−−−−−→
OαβPαβ and

−−→
OP0,

but also should find the circle number (period number f = [0, ..., F − 1]) of
−−−−−→
OαβPαβ

such that the unique phase value Φ = (2fπ + φ)/F can be obtained. However, since
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using traditional high frequency phase the coordinates of points with the same φ but

different f (periodical points) overlap in RN , ambiguities exist making it difficult to

obtain the period number f .

Indeed, traditional high frequency phase is realized by repeating the sinusoidal

pattern spatially. We note this type of high frequency as ambiguous high frequency. It

introduces ambiguities in phase, because periodical points have the same coordinates

in RN . The process of identifying f is well known as the unwrapping of high frequency

phase and has been studied for over 20 years [95]. But the approaches are still not

very satisfying. After unwrapping, the unique correspondence between projector and

camera is found. Generally, the phase value Φ is further scaled back to [0, 2π) in order

to unify the 3-D reconstructions for both unit and high frequency pattern strategies.

In this chapter, we will show in Sec. 2.3 that the high frequency phase does not

necessarily have to be realized by high frequency patterns. And besides the ambiguous

high frequency, there is an other way to increase the frequency of phase where patterns

are still in unit frequency and no ambiguity is introduced. We note this type of high

frequency as non-ambiguous high frequency.

2.2 Influence of intensity noise

Although the reflection process does not change the direction of computational vector,

employing such light patterns requires the projector and camera to support multiple

gray levels, and noise also exists in the captured images. There are noise sources,

including: camera [74], projector [45, 84], ambient light noise [45] as well as other

sources [74,85,86,87]. In this chapter, similar as several other researchers [74,85,86],
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Figure 2.4: Relationship between computational length and created error. Two points
P1 and P2 in R3, with L1 > L2, are affected by the same noise (w0, w1, w2) such that
the errors in phase Φ1e and Φ2e are respectively generated.

we assume that the combination of noise sources is additive, white, Gaussian noise,

wn ∼ N(0, σ2), and by adding the noise, the captured images Icn can be rewritten as:

Ĩcn(xc, yc) = α(xc, yc)[In(yp) + β(xc, yc)] + wn(xc, yc), (2.7)

where ·̃ denotes the observed variables with noise. The point P = (Ic0, I
c
1, ..., I

c
N−1) is

shifted to P̃ = (Ic0 + w0, I
c
1 + w1, ..., I

c
N−1 + wN−1), where such shifting of P changes

the direction of
−→
OP , which will further creates the error Φe in phase.

In Fig. 2.4, we plot two points, P1 and P2, in R3 where L1 > L2. We assume the

same noise (w0, w1, w2) is added to P1 and P2 such that the created errors, in phase,

are Φ1e and Φ2e respectively. Obviously with L1 > L2, Φ1e is smaller than Φ2e; thus,

the pattern sensitivity to noise is related to the computational length.

In order to analyze the relationship between error in phase, Φe, and computational
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length, L, for real valued numbers a and b, the following equation always exists:

arctan(a)− arctan(b) = arctan

(
a− b
1 + ab

)
, (2.8)

we have,

Φe(x
c, yc) = Φ(xc, yc)− Φ̃(xc, yc)

= arctan

[∑N−1
n=0 Ĩ

c
n(xc, yc) sin(2πn

N
)∑N−1

n=0 Ĩ
c
n(xc, yc) cos(2πn

N
)

]
−

arctan

[∑N−1
n=0 I

c
n(xc, yc) sin(2πn

N
)∑N−1

n=0 I
c
n(xc, yc) cos(2πn

N
)

]

= arctan
(
Y

X

)
(2.9)

where

X(xc, yc) = α(xc, yc)L(yp) +√
2

N

N−1∑
n=0

wcn(xc, yc) sin(Φ(yp)− 2πn

N
), (2.10)

and

Y (xc, yc) =

√
2

N

N−1∑
n=0

wcn(xc, yc) cos(Φ(yp)− 2πn

N
). (2.11)

Because the noise, wn, is much smaller than the computational length L, we can

further approximate Eqs. (2.9) to (2.11) to

Φe(x
c, yc) ≈

√
2
N

∑N−1
n=0 w

c
n(xc, yc) cos(Φ(yp)− 2πn

N
)

α(xc, yc)L(yp)
. (2.12)

By assuming wn ∼ N(0, σ2), where σ is regarded as the standard deviation of system

noise, the standard deviation of Φe is

σΦ(xc, yc) ≈ σ

α(xc, yc)L(yp)
. (2.13)
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When the high frequency phase with number of periods F is applied, the phase error

Φe is divided by F after unwrapping and scaling back to [0, 2π), such that σΦ is

σΦ(xc, yc) ≈ σ

α(xc, yc)FL(yp)
, (2.14)

From Eq. (2.14), the standard deviation of phase error decreases with the increasing

of α, F , and L. The albedo, α, depends on the scene under scanning. The increasing

of F will not reduce the error in high frequency phase signal, but, σΦ is reduced by

unwrapping and scaling the high frequency phase into [0, 2π). In this chapter, we

consider the increasing of F as an approach to reduce error such that it becomes

reasonable for us to define the SNR for PMP as

SNR(xc, yc) =
L(yp)F

σ
. (2.15)

As clearly shown in Eq. (2.15), the SNR value in captured images depends on the

corresponding computational length L in patterns and the number of periods F . In

other words, LF represents the signal strength of phase.

In this chapter, we focus on maximizing the SNR value for the phase shifting

methods, which is realized by maximizing the computation length, L, and the number

of periods, F , without introducing ambiguities. Here, the high frequency phase is

non-ambiguous high frequency.

2.3 Edge-pattern

For a phase shifting pattern strategy, the optimization of patterns is achieved by

maximizing L and F . In this subsection, we first maximize the computational length
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Figure 2.5: Cross sections of the 3-pattern E-P strategy in coding space.

L in the coding space RN to achieve the highest SNR design of patterns. The

maximizing of L in practice should have the following basic properties:

Property 1: The Dynamic range of the patterns: {In(xj, yj)} should stay within the

dynamic range of the projector, [0, 1].

Property 2: At least three different illuminations should be projected in order to

solve Eq. (2.4), since there are three unknown parameters α, β, and Φ.

Property 3: The maximization of computational length, L, should not affect the

phase value at each point, in order to achieve an accurate 3D reconstruction

based on phase.

For PMP, the computational center O is equal to (0.5, 0.5, ..., 0.5) in RN ; thus, the

computational length, L, defined in Eq. (2.6), can be further specified as:

Lyp =

[
N−1∑
n=0

(In(yp)− 0.5)2

] 1
2

. (2.16)
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Figure 2.6: Cross sections of the 3-pattern E-P strategy.

Table 2.1: Edge order for 3 pattern strategy.

Edge number ec0 ec1 ec2 ec3 ec4 ec5
Ic0 med inf inf med sup sup
Ic1 inf med sup sup med inf
Ic2 sup sup med inf inf med

Table 2.2: Four patterns E-P strategy.

Period number f=0 f=1 f=2 f=3
Edge number e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23

I0 ie de ie de ie de 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
I1 0 0 0 1 1 1 de ie de ie de ie 1 0 0 0 1 1 1 1 0 0 0 1
I2 0 1 1 1 0 0 0 1 1 1 0 0 ie de ie de ie de 0 1 1 1 0 0
I3 1 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0 ie de ie de ie de

With the satisfaction of the Prop (2), the maximum L is achieved when In(yp) is 0 or 1.

However in order to satisfy Prop. (2), there should be a Ik(y
p) = λ where k ∈ [0, N−1]

and λ ∈ (0, 1) such that there are three different illuminations {i0, i1, i2} = {0, 1, λ}

and Eq. (2.4) can be solved. And according to Prop. (3), we have

arctan

[∑2
n=0 in(yp) sin(2πn

N
)∑2

n=0 in(yp) cos(2πn
N

)

]
= Φ(yp), (2.17)

from where the value of λ can be obtained. In practice, we increase the span of

{I0, I1, I2} at points yp until the span achieves 1 and then we shift {I0, I1, I2} into

[0, 1].
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Figure 2.5 shows the optimized 3-pattern strategy in R3 coding space, where the

patterns in projector space is shown in Fig. 2.6. Since for every point in R3 there are

illuminations 0 and 1, all the points are “pushed” onto the edges of the coding space.

Thus, we denote the optimized pattern as edge-pattern (E-P). The phase value is still

the angle between
−−→
OP0 and

−→
OP such that, using Eq. (2.4), Prop. (3) is satisfied. The

obtained phase ranges in [0, 2π) for unit frequency. The illumination λ is denoted

as edge. For the 3-pattern strategy, there are 6 edges. If the illumination values

on an edge are increasing spatially, the edge is denoted as an increasing edge (ie).

Otherwise, if the values are decreasing spatially, the edge is denoted as a decreasing

edge (de). The phase information is actually coded into the edges. It should be noted

that the edges in projector space, as shown in Fig. 2.6, are not linear but distorted

curves. The distortion ensures the linear phase obtained from edges.

After capturing the images, {Icn}, for each valuable point (xc, yc) in camera space,

there are three different intensity values {Ic0(xc, yc), Ic1(xc, yc), Ic2(xc, yc)}. We denote

the infimum value as inf(xc, yc), the median value as med(xc, yc), and the supremum

value as sup(xc, yc). Thus, the six edges in the projected patterns will correspondingly

have six edges in camera space {ec0, ..., ec5}. For 3 pattern E-P, Eq.(2.4) is further

specified as

φ(xc, yc) = arctan

[
30.5(Ic1(xc, yc)− Ic2(xc, yc))

2Ic0(xc, yc)− Ic1(xc, yc)− Ic2(xc, yc)

]
. (2.18)

The order of the edges in camera space should not be changed such that a linear phase

ranging from 0 to 2π can be obtained from Eq. (2.18). For the 3-pattern strategy,

the algorithm does not need to identify the edge number.
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In the 3-pattern strategy, the number of patterns equals to the minimum require-

ment of Prop (2). When N > 3, there are extra patterns. It becomes possible to

employ the illuminations with value either 0 or 1 to increase the number of periods

F without introducing the ambiguity, as we will illustrate following.

For an N > 3 pattern strategy, we have C1
N choices to locate the edge where the

rest of the illuminations are either 0 or 1, and at least one illumination is 0 and one

illumination is 1. The rest of the illuminations should be designed such that no points

in RN overlap. Thus, the total number of edges, E, is

E = C1
N(2N−1 − 2), (2.19)

and every 6 edges consist of a period of phase such that the number of periods, F , is

F =
C1
N(2N−1 − 2)

6
. (2.20)

Thus, the non-ambiguous high frequency phase signal is embedded into the patterns.

For the 4 pattern strategy. Based on the definitions of ie and de, there are 24 edges

and, correspondingly, 6 periods. The E-P patterns are shown in Table 2.2.

Different from traditional high frequency phase, no points in RN overlap such that

the frequency is introduced without ambiguity as shown in Table 2.2. Each edge can

be identified by referring the code created by 0 and 1 illuminations. It should be

noted that it is also possible to increase the ambiguous high frequency for E-P by

repeating the patterns spatially; however, similar to the traditional approaches, the

unwrapping problem would be introduced. Thus, in this chapter we only focus on

non-ambiguous high frequency.
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When N > 3, for each valuable point (xc, yc) in camera space, the algorithm needs

to first identify the median intensity Icλ(x
c, yc) = med({Ic(xc, yc)}). For intensities

higher than med(xc, yc), they are identified as supremum intensities {Icsup(xc, yc) :

Icsup(x
c, yc) > med(xc, yc)}. The intensities lower than med(xc, yc) are identified as

infimum intensities {Icinf (xc, yc) : Icinf (x
c, yc) < med(xc, yc)}.

At each point (xc, yc), there is only one median intensity which is corresponding

to an ie or de in the projected patterns. However, there are several infimum and

supremum intensities. In practice, the infimum and supremum values are further

refined by

inf(xc, yc) = mean({Icinf (xc, yc)}) (2.21)

and

sup(xc, yc) = mean({Icsup(xc, yc)}), (2.22)

where the noise in inf(xc, yc) and sup(xc, yc) will be further reduced. The temporal

order of infimum, median, and supremum intensities create a code, according to which

the algorithm can decide the edge number at (xc, yc).

The high frequency phase, φ, is then obtained from the three intensities {inf,med, sup}

using Eq. (2.18). In each period, the order of inf, med, and sup, when applying Eq.

(2.18) is shown in Table 2.1. For example at point (xc, yc), if the captured edge is

identified as ec20, which is the third edge in period 4 according to Table 2.1, then we

have Ic0(xc, yc) = inf(xc, yc), Ic1(xc, yc) = sup(xc, yc) and Ic2(xc, yc) = med(xc, yc) for

Eq. (2.18). And the obtained high frequency phase, φ, is further unwrapped and
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Table 2.3: Theoretical improvements of SNR for different number of patterns.

E-P/PMP L F SNR

N=3 1.2381 1 1.2381
N=4 1.2834 4 5.1336
N=5 1.3318 11.67 15.5421

scaled to Φ by

Φ(xc, yc) =
φ(xc, yc) + 2f(xc, yc)π

F
. (2.23)

Here since the edge number and period number are all obtained by the temporal

order of infimum, median, and supremum intensities, no ambiguity is introduced for

the high frequency phase when unwrapped and scaled to Φ.

From Eq. (2.15), the increasing of L and F improves the SNR of patterns. The

theoretical average improvements in SNR for different numbers of patterns when

comparing the E-P strategies and the traditional PMP strategies are shown in Ta-

ble 2.3. As shown in Table 2.3, with an increasing number of patterns, the im-

provement in SNR also increases. For N = 5 strategies, the computational length

is improved by 1.3318 times and the non-ambiguous high frequency is improved by

11.67 times. Thus, theoretically, the SNR of E-P is 15.5421 times higher than that of

a traditional PMP strategy. Table 2.3 also indicates that the efficiency of traditional

PMP pattern becomes lower with more patterns.

2.4 Experimental results and discussion

To demonstrate the advantages of the proposed pattern strategy, we developed the

SL system shown in Fig. 4.17, employing an 8 bpp, monochrome, Prosilica GC640M,

gigabit ethernet camera with 640×480 pixel resolution. The projector is composed of
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Figure 2.7: The prototype system setup for E-P.

a Texas Instrument’s Discovery 1100 board with ALP-1 controller and LED-OM with

225 ANSI lumens. The resolution of the 8 bpp, monochrome, projector is 1024×768,

with a maximum frame rate of 150 fps. The camera and projector are synchronized by

an external triggering circuit with a baseline distance between camera and projector

of 120 mm. For testing, the scanned object was placed around 600 mm away. Gamma

correction was performed on the received images, while a lookup table was created to

correct optical distortion. In the following experiments, objects were scanned with a

camera exposure time of 1.6 ms. Due to the low illumination of our projector and

the small exposure time, the standard deviation of system noise, σ, was 1.3365.

In the first experiment, we compare the accuracy of traditional PMP and E-P in

the presence of noise. For this purpose, we performed both PMP and E-P for different

N by scanning a textured, flat, poster board. The approximate size of the board is

210 × 280 mm, where the front view and the top views of the board are shown in

Fig. 3.12.
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(a)

(b)

Figure 2.8: The scanned textured, flat, poster board. (a) The front view. (b) The
top view.

In this paper, the proposed pattern strategy is to maximize the SNR of the pat-

terns. Thus, only error caused by the uncertainty noise is concerned here. In order

to obtain the “ground-truth” phase of the scanned board, we scanned the board 2000

times using the multi-frequency PMP strategy studied in [72]. And the ground-truth

phase is the averaged value of the 2000 phase values. Then, the board was scanned

54



www.manaraa.com

200 250 300 350 400

−0.1

−0.05

0

0.05

0.1

Pixel

Ph
as

e 
Er

ro
r

 

 

PMP
E−P

200 250 300 350 400

−0.1

−0.05

0

0.05

0.1

Pixel

Ph
as

e 
Er

ro
r

 

 

PMP
E−P

200 250 300 350 400

−0.1

−0.05

0

0.05

0.1

Pixel

Ph
as

e 
Er

ro
r

 

 

PMP
E−P

(a) (b) (c)

Figure 2.9: (a) Cross sections of phase error of the scanned board from 3 pattern
PMP and E-P strategies. (b) Cross sections of phase error from 4 pattern PMP
and E-P strategies. (c) Cross sections of phase error from 5 pattern PMP and E-P
strategies.

using PMP and E-P strategies. As a means of analysis, Fig. 2.9 shows cross section

comparisons of the phase error using traditional PMP and proposed E-P patterns.

The phase error is the difference between the obtained phase and the ground-truth

phase. As shown in Fig. 2.9 (a), for N = 3 pattern strategies, the phase of E-P

is more accurate than that of PMP, although the difference between the two phase

errors is small. With more patterns, the accuracy of E-P increases faster than that

of PMP, as indicated in Figs. 2.9 (b) and (c).

Further, in order to quantify the differences between PMP and E-P, we scanned

the board using PMP and E-P respectively for 2000 times. The numbers of patterns

change from 3 to 5. The phase error is the difference between each individually

obtained phase and the ground-truth phase. The mean values of the phase error

for both PMP and E-P with different numbers of patterns are close to 0. And the

standard deviation values of phase error are list in Table 2.4.

In Table 2.3, we list the theoretical improvements in SNR for different number of

patterns, comparing E-P and traditional PMP strategies. In experiments, we obtain
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Table 2.4: Standard deviation values of phase error of the scanned board for PMP
and E-P.

Number of patterns 3 4 5

σPMP 0.0263 0.0228 0.0204
σE−P 0.0213 0.0048 0.0015

σPMP/σE−P 1.2362 4.7109 13.6027

the SNR improvement by measuring the reduction in standard deviation of phase

error. In Table 2.4, we list the ratio between standard deviations of phase error

using PMP and E-P, for N =3, 4, and 5 pattern strategies. The ratio represents the

improvement. For N = 3, the experimental SNR improvement is 1.2362, whereas

the theoretical value is 1.2381. For N = 4, the experimental SNR improvement

is 4.7109, whereas the theoretical value is 5.1336. And for 5 pattern strategy, the

experimental SNR improvement is 13.6027, whereas the theoretical value is 15.5421.

The difference between the experimental and theoretical values is due to the de-

focus and resolution differences between projector and camera. Thus, the received

patterns can be regarded as low pass filtered and the points where the projected light

intensity changes from 0 to 255 become difficult to be identified. However, as shown

in Table 2.4, the E-P still achieves a higher SNR than traditional PMP. And, as the

number of patterns increasing, the improvement of SNR increases. This indicates

that, using traditional PMP strategy, the efficiency of patterns becomes lower with a

larger N .

As the second experiment, we scanned a white plaster model, Alice, as shown in

Fig. 2.10, using different pattern strategies with 2000 times for each strategy. Typical

3-D reconstructions are shown in Fig. 2.11. From Fig. 2.11 (a) to (c), the results are

respectively obtained using 3, 4 and 5 pattern traditional PMP strategies, whereas,
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Figure 2.10: The scanned white plaster model, Alice.

from Fig. 2.11 (d) to (f), the results are created using 3, 4 and 5 pattern proposed

E-P strategies. Comparing the results using the same number of PMP patterns, the

proposed E-P strategy achieves better results in the present of noise. For N = 3,

the improvement is not obvious in the 3-D results (19% reduction in the standard

deviations of reconstruction error). However for N = 4 and N = 5, the improvements

are visually clear. Compared to traditional PMP, the proposed E-P is more robust

to the uncertainty noise.

For a quantified analysis, the “ground-truth” phase of the scanned Alice is ob-

tained from an average of 2000 times multi-frequency PMP scanning. Thus, the phase

error can be calculated. The distributions of phase errors using different strategies

are shown in Fig. 2.12. The mean values of the phase error for both PMP and E-P

with different numbers of patterns are close to 0. However, the standard deviation
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: 3D reconstructions of Alice. Results are shown with depth rendering. (a)
Reconstruction using traditional 3 pattern PMP. (b) Reconstruction using traditional
4 pattern PMP. (c) Reconstruction using traditional 5 pattern PMP. (d) Reconstruc-
tion using 3 pattern E-P. (e) Reconstruction using 4 pattern E-P. (f) Reconstruction
using 5 pattern E-P.

values from E-P strategies are smaller than those from PMP strategies. And, from

Fig. 2.12 (a) to (c), as the N varies from 3 to 5, the standard deviation values of E-P

decreases faster than that of PMP.

The experimental standard deviation values of phase error from scanning Alice

are listed in Table 2.5. The experimental SNR improvement for N = 3 is 1.2377. For

N = 4, the experimental SNR improvement achieves 4.9729. And, it is 14.0625 for

N = 5. The difference between the experimental and theoretical improvement values

indicates that the problem caused by the de-focus and resolution differences between

58



www.manaraa.com

−0.1 −0.05 0 0.05 0.1
0

0.005

0.01

0.015

0.02

0.025

Phase Error

D
is

tr
ib

ut
io

n

 

 

PMP
E−P

−0.1 −0.05 0 0.05 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Phase Error

D
is

tr
ib

ut
io

n

 

 

PMP
E−P

−0.1 −0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

Phase Error

D
is

tr
ib

ut
io

n

 

 

PMP
E−P

(a) (b) (c)

Figure 2.12: (a) Distribution of phase error of Alice from 3 pattern PMP and E-P
strategies. (b) Distribution of phase error from 4 pattern PMP and E-P strategies.
(c) Distribution of phase error from 5 pattern PMP and E-P strategies.

Table 2.5: Standard deviation values of phase error of the scanned Alice for PMP
and E-P.

Number of patterns 3 4 5

σPMP 0.0103 0.0089 0.0080
σE−P 0.0083 0.0018 5.7×10−4

σPMP/σE−P 1.2377 4.9729 14.0625

projector and camera is still suffered in the second experiment. However, compared

to the first experiment, the results from both PMP and E-P are improved. It is due

to the fact that Alice is a white plaster model which has a higher albedo value (α in

Eq. (2.14)).

By regarding the design of N pattern strategy in SLI system as placing points in

an N dimensional coding space, we have defined computational length and derived a

mathematical SNR model for the widely used PMP pattern strategy. As indicated in

the model, the SNR is strongly related to the computational length and the frequency

of patterns. Thus, we proposed a scheme to increase the computational length without

changing the phase value. And we proposed the concept of non-ambiguous high

frequency. Different from traditional high frequency patterns where there are points

overlapping in coding space, the proposed non-ambiguous high frequency patterns

do not have ambiguous points such that the unwrapping of the high frequency phase
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can be solved temporally without projecting extra patterns. The same as PMP, the

proposed E-P strategy requires at least 3 patterns.

Experimental results demonstrate that by maximizing the computational length

and employing the non-ambiguous high frequency, the E-P strategy achieves a higher

SNR than the traditional PMP strategy. With more patterns, the pattern SNR

improvement increases further; however, in practice, we noticed that the difference

between theoretical and experimental improvements also increases with the number

of patterns. We believe that it is caused by the de-focus and resolution difference

of the projector and camera pair. For future research, we will further exploit the

E-P strategy, especially the de-codification methods, such that we can address to the

de-focus and resolution difference problems.
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Chapter 3 PERIOD CODED PHASE SHIFTING

In an effort to develop a low-computation, high-frequency pattern scheme that can

achieve high measurement accuracy and unwrapping robustness, this chapter presents

the novel method of Period Coded Phase Shifting (PCPS) that avoids the introduc-

tion of extra patterns without losing accuracy. For this purpose, we first develop the

notion of spatial intensity efficiency to measure the proportion of the projector’s dy-

namic range spanned by the projected patterns and, thereby, determine if the pattern

intensity values are under-utilized. For pattern sets with an efficiency of less than

100%, a reference unit frequency signal (or period cue) is embedded into the pattern

set such that pixels of the projector, having the same phase but different periods,

no longer project the same intensity values. To maximize the difference among these

same-phase-but-different-period points (periodical points), we define pattern entropy

as a measure of how far apart the periodical points are. The parameters of this added

information are then optimized to make maximum amplitude of the period cue.

Having laid this foundation of efficiency and entropy, this chapter proposes a hy-

brid unwrapping method to take advantage of both spatial and temporal unwrapping

approaches where a triangular phase waveform is proposed for phase shifting meth-

ods that provides a doubled frequency compared to the traditional sawtooth phase

waveform. The proposed method works for most phase shifting schemes, and in this

chapter, we demonstrate the advantages of the proposed approach both mathemat-

ically and experimentally using a high-speed, real-time prototype system achieving
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120 fps using a 640× 480 resolution camera.

3.1 Phase shifting structured light illumination

Phase shifting methods project a set of time-multiplexed patterns, {Ibn : n = 0, 1, ..., N−

1}, onto a target object such that an off-axis imaging sensor observes the scene and

captures the wave patterns distorted by the surface topology under inspection. Gen-

erally, the patterns {Ibn} are designed as

Ibn(xj, yj) = A+Bs(xj, yj), (3.1)

where A is a temporal DC value, B is the amplitude (or projector modulation) value

of a periodical signal function s(xj, yj). The coordinate (xj, yj) is the corresponding

coordinate in the projector. The captured images, {Icn : n = 0, 1, ..., N − 1}, are then

denoted as

Icn(xc, yc) = α(xc, yc)Ibn(xj, yj) + α(xc, yc)β(xc, yc), (3.2)

where the superscript c indicates that Icn is now in the camera space and (xc, yc)

is the two-dimensional camera coordinate [45]. In Eq. (3.2), α(xc, yc) represents

the albedo with α(xc, yc) ∈ [0, 1] where 0 is pure black and 1 is pure white. The

term, α(xc, yc)β(xc, yc), represents the albedo image from ambient illumination with

intensity β(xc, yc).

Through a decoding function and a phase unwrapping algorithm, the phase Φ

that represents the coordinate of xj or yj, can be obtained from the “wrapped” (or
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coded) phase φw which is expressed as

φw(xc, yc) = g

[
U(xc, yc)

V (xc, yc)

]
, (3.3)

where

U(xc, yc) =
N−1∑
n=0

anI
c
n(xc, yc), (3.4)

and

V (xc, yc) =
N−1∑
n=0

bnI
c
n(xc, yc). (3.5)

The terms an and bn are two coefficients in summations such that, in U(xc, yc) and

V (xc, yc), the terms of β(xc, yc) and the DC value A in images are canceled, while the

division between the two summations cancels the terms of α(xc, yc). The term g(·) is

a function that estimates the phase values φw(xc, yc) ∈ [0, 2π) out of image intensity

values. The modulation M(xc, yc) is given by

M(xc, yc) = γ
√

(U(xc, yc))2 + (V (xc, yc))2, (3.6)

where γ is a coefficient related with the number of patterns. Noting that the value

of M(xc,yc)
α(xc,yc)

represents the strength of the high frequency signal at pixel (xc, yc), we

define the Signal to Noise Ratio (SNR) for phase shifting methods as

SNR(xc, yc) = λ
M(xc, yc)

α(xc, yc)σ
, (3.7)

where λ is a coefficient that is a function of the number of patterns, N , and σ is

the standard deviation of the system noise. It should be noted that in Eq. (3.7),

the temporal DC value A in the time-multiplexed patterns {Ibn} can be canceled

by the summations in U and V . Thus, the SNR is only related to the temporal
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AC values B in {Ibn}. The specific decoding functions, Eqs. (3.3) and (3.6), are

designed for the particular pattern strategy such that, after unwrapping the wrapped

phase φw in Eq. (3.3) into the final phase Φ ∈ [0, 2Pπ), where P is the number of

periods, the correspondence problem can be solved without using any point-matching

or image enhancement. The 3-D coordinates are finally recovered from pre-calibrated

triangulation [100,23].

For the specific phase shifting method of PMP, the patterns {Ibn : n = 0, 1, ..., N−

1} of Eq. (3.1) are given by [70]

Ibn(xj, yj) = A+B sin(Φ(xj, yj)− 2nπ

N
). (3.8)

The sinusoidal light signal can cover the whole resolution range of a projector [0, 1],

if both A and B are given the value of 0.5. After capturing the PMP images {Icn} in

a camera, the decoding function of Eq. (3.3) is given by

φw(xc, yc) = arctan

[∑N−1
n=0 I

c
n(xc, yc) cos(2πn

N
)∑N−1

n=0 I
c
n(xc, yc) sin(2πn

N
)

]
= arctan

[
U(xc, yc)

V (xc, yc)

]
, (3.9)

where

U(xc, yc) =
N

2
α(xc, yc)B sin(Φ(xc, yc)), (3.10)

and

V (xc, yc) =
N

2
α(xc, yc)B cos(Φ(xc, yc)). (3.11)

The modulation M(xc, yc) = α(xc, yc)B (Eq. (3.6)) becomes

M(xc, yc) =
2

N

√
(U(xc, yc))2 + (V (xc, yc))2. (3.12)
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Thus, the specific SNR of Eq. (3.7) for PMP pattern strategy is [74]:

SNR(xc, yc) =

√
NM(xc, yc)√
2α(xc, yc)σ

, (3.13)

that is λ =
√
N/2.

Non-ambiguous phase unwrapping

In order to obtain the correspondence between camera and projector, the high fre-

quency signal φw should be further unwrapped into Φ ∈ [0, 2Pπ) where P is the

number of periods. To do so, a secondary unit frequency signal (period cue) can

be added into the projected patterns. In this sub-section, we first propose a simple

approach to add the second signal such that, in case of PMP, the projected patterns

are given by

Ibn(xj, yj) = A+B sin(Φ(xj, yj)− 2nπ

N
) + p(xj, yj), (3.14)

where {p(xj, yj) : 0, 1
2k−1

, ..., P−1
2k−1
} is the period number at (xj, yj) when a k-bits per

pixel (bpp) projector is used. After capturing the images {Icn} through Eq. (3.2) and

ignoring the effects of system noise and ambient light, the high frequency wrapped

phase φw(xc, yc) is obtained from Eq. (3.9), while the period information p(xc, yc)

can be obtained by

p(xc, yc) =
1
N

∑N−1
n=0 I

c
n(xc, yc)

M(xc, yc)
B − A. (3.15)

Thus, Φ(xc, yc) = φw(xc, yc)+2πp(xc, yc), i.e., the high frequency signal is unwrapped.

Compared to the traditional PMP, this method temporally unwraps the high fre-

quency phase information without projecting extra patterns; however in order to
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Figure 3.1: Illustration of four pattern, two period PMP strategy where the points
E1 and E2 are shiftable, periodical points while point F is a shiftable and scalable
point.

leave room within the projector’s resolution range for the unit frequency signal p, the

high frequency amplitude needs to be reduced from B = 0.5 to 0.5− P
2k−1

. Thus, the

obtained modulation M and the SNR of the high frequency signal has to be reduced,

thereby, increasing the impact of noise on the phase image.

With the ability to uniquely decode the period number, it is expected that an

increase in the period number of the original signal will compromise the effects of

noise to a greater extent. But it would be ideal to find a low frequency period cue

that uniquely decodes the period number in the demodulated phase image without

reducing the SNR. To this end, we note that there are intelligent ways to design and

add this second signal such that the combined signal still falls within the resolution

range of a projector without reducing the high frequency signal’s amplitude. Unlike

the pattern strategy in Eq. (3.14), these intelligent approaches are robust to system

noise and ambient illumination.

In order to develop our discussion of intelligent period cue design, we first exam

the case of N = 4 and P = 2 pattern PMP (Fig. 3.1) to illustrate how a second

66



www.manaraa.com

signal can be added without reducing the original signal’s amplitude. Here, Eq. (3.9)

is reduced to

φw(xc, yc) = arctan

[
Ic0(xc, yc)− Ic2(xc, yc)

Ic1(xc, yc)− Ic3(xc, yc)

]
(3.16)

where high frequency signal φw(xc, yc) remains constant as long as the ratio between

(Ic0(xc, yc)− Ic2(xc, yc)) and (Ic1(xc, yc)− Ic3(xc, yc)) remain the same even though the

values of {Ic0(xc, yc), ..., Ic3(xc, yc)} may change. As such, we define the action of

“shifting” as the process of changing the intensity values of Ibn(xj, yj) such that the

ratios of the distances among {Ibn(xj, yj)} are changed. We further define the action

of “scaling” as the process of changing the intensity values of Ibn(xj, yj) such that the

ratios of the distances among {Ibn(xj, yj)} remain the same.

Having the notions of shifting and scaling, we can classify the points of our SLI

pattern set into: (1) shiftable points, and (2) shiftable and scalable points. As shown

in Fig. 3.1 point E1, the wrapped phase value φwE1
is 0.5π such that {Ib0 = 1, Ib1 =

0.5, Ib2 = 0, Ib3 = 0.5}. The projected intensities of Ib1 and Ib3 can be shifted within

[0, 1] under the constraint that Ib1 = Ib3, and the obtained φwE1
will not change. The

point E1 is a shiftable point; however, the intensities at E1 can not be scaled up since

Ib0 achieves the supremum bound of the projector, and Ib2 achieves the infimum bound.

At the same time as shown in Fig. 3.1 point F , φwF = 1.25π and {Ib0 = 0.1464, Ib1 =

0.8536, Ib2 = 0.8536, Ib3 = 0.1464} where, since none of the four projected intensities

achieves 0 or 1, the intensities can be scaled up as long as the ratio between (Ib0 − Ib2)

and (Ib1 − Ib3) stay the same. And, the intensities at F are also shiftable.

It is the operations of shifting and scaling pixels, without changing the high fre-

67



www.manaraa.com

quency signal, that provides the possibility of encoding a second signal in the projec-

tion patterns. As stated above for the point E1, the shifting of Ib1(xj, yj) and Ib3(xj, yj)

will not change the values of (Ic0(xc, yc)− Ic2(xc, yc)) and (Ic1(xc, yc)− Ic3(xc, yc)) under

the constraint that Ib1(xj, yj) = Ib3(xj, yj). Actually, only the A values of Ib1(xj, yj)

and Ib3(xj, yj) in Eq. (3.8) are changed. Thus, the shifting of Ib1(xj, yj) and Ib3(xj, yj)

does not affect the B value nor the SNR of φw(xc, yc); however, scaling the intensities

causes a change in B in Eq. (3.8). By increasing the distance between intensities,

the B value will be increased such that the SNR is improved. In order to embed a

second signal into the pattern set without changing the SNR of the original signal,

we need only be concerned with shifting intensity values, and in order to measure how

much particular intensities can be shifted in the patterns, we first define the spatial

intensity efficiency η.

Spatial intensity efficiency

For phase shifting patterns (in projector space), there are P points, one point for

each period of the projected pattern, having the phase value φw(xc, yc) = Φ(xc, yc)−

2p(xc, yc)π where φw(xc, yc) is the wrapped phase value within the range [0, 2π). As

shown in Fig. 3.1, the points E1 and E2 are two such periodical points having the

same wrapped phase value φw = 0.5π. Correspondingly, there are NP intensity

values, {In(φw) : n = 0, 1, ..., NP − 1}, projected from these periodical points across

the pattern set. For each intensity In(φw), there are 2k available intensities that

In(φw) can choose from inside a k bpp projector. We denote ∆n(φw) as the number

of different intensity values that result in the same value of phase, i.e. the shiftable
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intensity values. In Fig. 3.1, the shiftable intensity values of Ib1 at point E1 is 2k. The

spatial intensity efficiency, η, for this phase shifting method is then defined as

η =
P

L

2π∑
φw=0

[(
1−

∑NP−1
n=0 ∆n(φw)

NP2k

)
× 100%

]
, (3.17)

where L is the pattern length or the number of pixels across which the pattern is

defined. It should be noted that, for patterns with length L and periods P , there

are L
P

different φw values. The spatial intensity efficiency is an average over all the

wrapped phase values. If all the intensities can not be changed at all in order to obtain

the same value of phase, ∆n(φw) = 0 and η = 100%. On the other hand, if no signal

is coded into patterns, ∆n(φw) = 2k and η = 0%. For the same pattern strategy with

the same numbers of patterns and periods, increasing of the amplitude of phase signal

will result in a higher spatial intensity efficiency and higher SNR. Table 3.1 lists the

spatial intensity efficiencies for several commonly used phase shifting methods where

L = 1, 280 pixels on an 8 bpp projector.

Now if the spatial intensity efficiency of a phase shifting method is less than 100%,

then it becomes possible to employ the remaining dynamic range of the projector

for other purposes. To solve the unwrapping problem in traditional phase shifting

methods, particularly in this chapter, the remaining dynamic range is employed for

embedding a period cue D under four constraints (described in Sec. 3.2). Here, we

introduce a generic signal such that the Eq. (3.2) becomes

Icn(xc, yc) = α(xc, yc)[Ibn(xj, yj) + Cn(xj, yj)] + α(xc, yc)β(xc, yc), (3.18)

where the term {Ibn} contains the information of high frequency phase φw, and {Cn}
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contains the secondary information D. Eq. (3.3) can be re-written as

φw(xc, yc) = g

(∑N−1
n=0 an[α(xc, yc)(Ibn(xj, yj) + Cn(xj, yj) + β(xc, yc))]∑N−1
n=0 bn[α(xc, yc)(Ibn(xj, yj) + Cn(xj, yj) + β(xc, yc))]

)
. (3.19)

Similar to Eq. (3.3), the terms of β(xc, yc) can be canceled by the two summations.

And, it is also possible that {Cn(xj, yj)} can be canceled by the two summations.

For example, at the point E1 in Fig. 3.1, the {Cn} can be designed as {0, s, 0, s}

where s ∈ [−0.5, 0.5] such that {Cn} would be canceled in φw and there is still a

considerably large dynamic range for the secondary generic signal since the value

of s can vary in [−0.5, 0.5]. The details about how the secondary signal can be

added without changing the amplitude of {Ibn} will be discussed in Sec. 3.2. Without

changing the amplitude of {Ibn}, the SNR of the original signal would also be the

same after embedding the secondary information. On the other hand, the period cue

is extracted according to

D(xc, yc) = FD
(
{α(xc, yc)(Ibn(xj, yj) + Cn(xj, yj) + β(xc, yc))}

)
, (3.20)

where FD(·) is a decoding function of period cue, as will be described in Sec. 3.3. The

function FD(·) may vary with the methods of coding period information as long as the

signal D(xc, yc) can be extracted. The high frequency signal can be then unwrapped

by referring to the period cue.

Pattern entropy

In Eq. (3.18), the added {Cn} will result in increased distinctions among the illu-

minations of periodical points {In(φw) : In(φw) = Ibn(φw) + Cn(φw)}. For example,

the projected intensities of E1 and E2 in Fig. 3.1 will no longer be the same, if two
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Table 3.1: Comparison of Spatial Intensity Efficiency and Pattern Entropy.

Pattern Strategy η H Remark

High frequency PMP [70,74] 63.80% 14.00 bit 4 patterns, 4 periods
Fast three-step phase-shifting [101] 82.71% 13.87 bit 3 patterns, 4 periods

2 + 1 method [88,102] 59.39% 13.81 bit 3 patterns, 4 periods
Three patterns trapezoidal [63] 100% 13.71 bit 3 patterns, 4 periods

Two-step triangular-pattern [81] 50.31% 13.67 bit 2 patterns, 4 periods

different sets of {Cn} are added. Indeed, the secondary information is extracted

from the differences among the illuminations of periodical points. Coding informa-

tion {Cn} can be added without losing the SNR of the original signal as long as

∑N−1
n=0 anI

c
n(xc, yc) and

∑N−1
n=0 bnI

c
n(xc, yc), in Eq. (3.19), can cancel out the terms of

{Cn}. Multiple solutions of a coded {Cn(xc, yc)} exist, if ∆n(φw) > P . So after em-

bedding the period cue, an optimization procedure should be performed to maximize

the distinctions among points with the same phase value {In(φw)}. The maximum

distinctions among these NP illumination points, in {In(φw)}, would be achieved

when {In(φw)} are uniformly distributed in the range of [0, 1].

In order to measure and maximize the differences, we propose the definition of

pattern entropy for phase shifting methods. The pattern entropy is a summation of

entropies of {In(φw)} over φw ∈ [0, 2π), and it is employed to maximize the informa-

tion content of the embedded secondary signal. In information theory, entropy is a

measure of the uncertainty associated with a random variable [103]. In order to extend

the entropy analysis to phase shifting methods, we first define the probability mass

function (pmf) of the intensity values. We assume the points with different wrapped

phase values are independent. For the periodical points, we first sort the projected

intensity values such that {In(φw) : 0 ≤ I0(φw) ≤ I1(φw)... ≤ INP−1(φw) ≤ 1}. By
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assuming a uniform distribution in [ In−1(φw)+In(φw)
2

, In(φw)+In+1(φw)
2

], the possibility at

intensity value, In−1(φw)+In(φw)
2

≤ x ≤ In(φw)+In+1(φw)
2

, is given by

p(x) =
∑

In(φw)=x

2

NL(In+1(φw)− In−1(φw))
. (3.21)

The range of intensity values is changed from [0, 1] to [− 1
2NP−2

, 1 + 1
2NP−2

], and the

uniform distribution in [0, 1] can achieve the highest pattern entropy. If − 1
2NP−2

≤

x ≤ I0(φw)+I1(φw)
2

, then

p(x) =
2(NP − 1)

NL(1 + (NP − 1)(I0(φw) + I1(φw)))
. (3.22)

And if INP−2(φw)+INP−1(φw)
2

≤ x ≤ 1 + 1
2NP−2

, then

p(x) =
2(NP − 1)

NL(2NP − 1− (NP − 1)(INP−1(φw) + INP−2(φw)))
. (3.23)

So the pattern entropy, H, is defined as

H = −
2π∑

φw=0

1+ 1
2NP−2∑

x=− 1
2NP−2

p(x)log2p(x). (3.24)

The pattern entropy is an integral over all the phase values. Among the strategies with

the same number of patterns, the higher pattern entropy indicates that the intensities

of the periodical points are closer to a uniform distribution. By maximizing the

pattern entropy, the distinctions among pixels with the same phase value {In(φw)}

would be maximized and, therefore, the content of the added information {Cn} is

optimized.

In Table 3.1, several commonly used phase shifting methods are listed with the

values of pattern entropy, assuming a pattern length of 1,280 pixels on an 8-bpp

projector. Pattern entropy measures the information in the projected patterns. In
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Table 3.1, high frequency PMP achieves the highest pattern entropy since 4 patterns

are used in this strategy. Not surprisingly, the two-step triangular pattern strategy

has the lowest pattern entropy.

3.2 Codification of projected patterns

In this section, we consider how the signals are coded into patterns in the projector

space. For PMP, the spatial intensity efficiency is 63.80%, leaving a 36.20% margin

of the available intensity dynamic range for adding a period cue signal. In order

to make a full use of the available dynamic range without a sacrifice in SNR, the

proposed pattern strategy consists of two codification stages: (1) phase codification

which introduces a triangular phase waveform, instead of saw-tooth, and encodes the

high frequency phase φw, and (2) period codification which implements Eq. (3.18)

and encodes the period cue D of the high frequency phase. In traditional PMP, the

saw-tooth high frequency phase φw is encoded into the sinusoidal intensities {Ibn}, as

defined in Eq. (3.8). Similarly, our triangular phase, noted as φw, is extracted from

intensities {Ibn}, as defined in Eq. (3.19), whereas the period cue D is obtained from

intensities (or coding functions) {Cn}, as defined in Eq. (3.20).

Triangular phase

Traditional high frequency phase obtained from Eq. (3.9) uses only temporal intensity

information, and its waveform is sawtooth [70, 74]. However, the small neighboring

information is actually also reliable and available in the phase image. By employing

such small neighboring spatial information, the phase frequency can be further im-
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proved. Thus, the reconstruction error will be reduced. In order to take advantage

of the spatial information, we propose a triangular waveform for the high frequency

phase such that the wrapped phase from Eq. (3.9) is first decoded into traditional

sawtooth waveform by utilizing a small portion of spatial information. This proce-

dure is for an initial coding. With a corresponding de-codification, it can provide a

doubled phase frequency.

Different from the traditional sawtooth high frequency phase, we employ a set of

sinusoidal wave patterns, {Ibn : n = 0, 1, ..., N − 1}, as the base patterns, such that

each point in the projector plane, (xj, yj), is given by

Ibn(xj, yj) = A+B sin(Φ(yj)− 2πn

N
), (3.25)

if p is even, and

Ibn(xj, yj) = A+B sin(Φ(yj)− 2πn

N
), (3.26)

if p is odd, where A and B are set to 0.5, same as traditional PMP patterns. The

term, Φ(yj), is given by

Φ(yj) = 2πP
yj

L
, (3.27)

where L is the pattern length. Note the dependence of the phase term, Φ(yj) on

yj, which is assumed to be positioned vertically above/below the projector. When

L = 1280 and P = 4, the created triangular phase is shown as the solid lines in

Fig 3.2.

Given the captured images, {Icn : n = 0, 1, ..., N − 1}, the received phase of

the sinusoidal wave at the camera coordinate (xc, yc) is calculated from Eq. (3.9).

To solve Eq. (3.9), at least 3 patterns are needed, and if P in Eq. (3.27) is
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Figure 3.2: Captured phase is unwrapped into initial decoded phase by judging the
location of phase value.

1 (unit frequency), then Φ(xc, yc) = φw(xc, yc). The 3-D world coordinates of a

point can be calculated from (xc,yc, Φ(xc, yc)). However, when the number of pe-

riods, P , is greater than 1, ambiguities in phase will appear as the phase values

Φeven(xc, yc) = 2p(xc, yc)π + φw(xc, yc) (p(xc, yc) = {1, 3, 5, ...}) and Φodd(x
c, yc) =

2p(xc, yc)π − φw(xc, yc) (p(xc, yc) = {2, 4, 6, ...}), in Eq. (4.11), all have the same

value φw(xc, yc) obtained from Eq. (3.9). Figure 3.2 shows that the wrapped phase

φw can be unwrapped into initial decoded phase φi by judging the position of φw.

After the initial decoding, φi is scaled to [0, 2π) such that the error in phase is

reduced during the scaling. Thus, the triangular phase φw is initially decoded and

scaled to φi with traditional sawtooth waveform. By using a small portion of spatial

information to determine whether the phase is increasing or decreasing, triangular

phase encoding provides a doubled-frequency from the point of view of the imaging

sensor, compared with the traditional sawtooth phase encoding. We denote P i as the

number of initial decoded periods, where P i = P
2

. For P ≥ 4, P i ≥ 2 which means

that ambiguities still exist. The high frequency φi needs to be further decoded into
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unit frequency signal Φ by referring the period cue.

Period codification

As discussed in Sec. 3.1 for phase shifting methods with the spatial intensity efficiency

less than 100%, we intend to embed a period cue signal into phase-shifting SLI pat-

terns within the remaining dynamic range without any reduction in the SNR. We

develop pattern codification as a means of removing ambiguities in initial decoded

phase by encoding the period cue pi = {0, 1, ..., (P i − 1)} into the SLI patterns such

that each point in the projector plane, (xj, yj), is given by

In(xj, yj) = Ibn(xj, yj) + Cn(yj), (3.28)

where Ibn(xj, yj) is defined in Eq. (4.11) and {Cn : n = 0, 1, ..., (N−1)} represents the

coding functions. Due to these added signals, the projected patterns are no longer

sinusoidal wave patterns.

In an N pattern strategy, the number of coding functions is also N for each

point (xj, yj). We need to define a parameter, period cue D(yj), in the projector

space, which is derived from the temporal values {Cn(yj)} and can be employed to

identify the period pi(yj) = {0, 1, ..., (P i − 1)}. The decoding filter function, FD(·),

can be implemented in various forms as long as it translates the N temporal values

{Cn(yj)} into a single value D(yj). For the phase values Φ(yj) = 2πpi(yj) + φi(yj)

(pi(yj) = {0, 1, ..., (P i− 1)}), D(yj) varies with respect to pi(yj) such that the period

number can be obtained from the value of D(yj).

In practice, for a pattern strategy with the spatial intensity efficiency less than
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100%, the coding functions {Cn(yj)}, in Eq. (3.28), should have the following basic

properties:

Property 1: Absence in phase: the calculation of phase value, in the camera space,

by means of Eq. (3.9) should not be affected by adding the coding functions

{Cn(yj)}, in order to achieve an accurate 3-D reconstruction based on phase.

Property 2: Dynamic range of coding: the illumination patterns, {In(xj, yj)}, in

the projector space (Eq. (3.28)), should stay within the dynamic range of the

projector, [0, 1]; otherwise, the patterns have to be scaled into [0, 1], which will

result in a reduced SNR of the high frequency phase.

Property 3: Maximum index probability: the information of period cue D(yj) should

maximize the probability of correctly indexing the period number pi(yj) in the

presence of system noise. That is, the D(yj) values for different periodical points

(points with the same φi(yj) values) should be as much distinct as possible, to

prevent false estimation of pi(yj) under noisy conditions.

Property 4: Maximum pattern entropy: the illumination patterns, {In(xj, yj)}, should

achieve maximum pattern entropy such that the signal strength of period cue

D(yj), realized by adding the coding functions {Cn(yj)}, is maximized.

In order to devise such a coding method that satisfies the above properties, we will

develop, first, an N = 4 pattern strategy where, as specified by Prop. (1), the values

of U and V in Eqs. (3.10) and (3.11) will remain unchanged by adding {Cn(yj)} if

N−1∑
n=0

Cn(yj) cos
(

2πn

N

)
= 0, (3.29)
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and

N−1∑
n=0

Cn(yj) sin
(

2πn

N

)
= 0. (3.30)

For N ≥ 3, solutions to Eqs. (3.29) and (3.30) always exist because the number of

unknown parameters is less than the number of equations. Particularly since N = 4,

C0(yj) = C2(yj) and C1(yj) = C3(yj) will satisfy the property of absence in phase.

Thus, we define the period cue, D(yj), for N = 4 as

D(yj) =
C0(yj) + C2(yj)− C1(yj)− C3(yj)

2
, (3.31)

which is a linear function of {Cn(yj)}.

For N = 4, Prop. (2) should be satisfied because: (1) the intensity values can not

exceed [0, 1] and (2) the dynamic range of the signals for computing high frequency

phase should not be reduced. That is, B remains unchanged. Thus for a pixel

In(xj, yj) of illumination patterns, the coding functions {Cn(yj)} must satisfy

Cn(yj) ≥ 0− Ibn(xj, yj), (3.32)

and

Cn(yj) ≤ 1− Ibn(xj, yj). (3.33)

From Eq. (3.20), the bounds of {Cn(yj)} will limit the value range of period cue

D(yj), which we denote as R(yj) with supremum bound sup{R(yj)} and infimum

bound inf{R(yj)}. Figure 3.3 shows the bounds of D(yj) when N = 4 and P = 4.

As shown for different Φ(yj), R(yj) is not the same. So to simplify the problem, we

set our bounds to a constant value R inside the theoretical bounds R(yj).

78



www.manaraa.com

0 5 10 15 20 25

−0.4

−0.2

0

0.2

0.4

Phase(rad)

In
te

ns
ity

 V
al

ue

Theoretical Supremum Bound

Applied Supremum Bound

Linear Period Cue

Theoretical Infimum Bound

Applied Infimum Bound

Figure 3.3: The dynamic range of linear period cue, D, when N = 4 and P = 4.

With regard to Prop. (3), the period cue pattern can be of any shape as long

as the cue values can be uniquely obtained from the received patterns, and for the

phase values Φ(yj) = 2pi(yj)π + φi(yj), (pi(yj) = {0, 1, ..., P i − 1}), the period cue

values must be unique. So for purposes of coding period, the cue patterns should

be continuous to avoid estimation errors, especially, when the resolution of camera is

higher than that of the projector. In addition, the values of D(yj) should be evenly

spread in R. So, we choose a linear period cue for the coding period in the N = 4

pattern strategy such that

D(yj) =
(sup{R} − inf{R})yj

L
+ inf{R}. (3.34)

A cross section of this linear period cue is shown in Fig. 3.3 while several cue values

for different phase values are list in Table 3.2. As shown, the distinction in cues for

all the phase values is maximized, given the limited dynamic range of cues. Despite

the presence of noise, the probability of correctly identifying the period is maximized.

Through the above three properties, the values of period cues, D(yj), can be

determined, but the period cues have not directly been embedded into the patterns.
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Table 3.2: Linear period cue values when N is 4 and P is 4.

Period Cue values for Cue values for Cue values for
pi Φ1 = 2piπ + 0 Φ2 = 2piπ + 2π

3
Φ3 = 2piπ + 4π

3

0 -0.252 -0.084 0.084
1 0 0.168 -0.084
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Figure 3.4: Created coding functions for an N = 4 and P = 4 strategy, where C0 = C2

and C1 = C3.

Instead, they are derived from the function FD(·) in Eq. (3.20). The coding functions

{Cn} should be designed to achieve the values of D, just as φw is achieved by designing

{Ibn}. In order to increase the SNR of φw, the amplitude B, in {Ibn}, is maximized.

Similarly, the pattern entropy should be maximized to increase the SNR of D (i.e.,

Property (4)), but there are restrictions from Eqs. (3.29) and (3.30)) for designing

{Cn}. Also, the relation between D and {Cn}, given in Eq. (3.20), along with the D

values given in Eq. (3.34), represent a third restriction on {Cn}.

The solution, given the above constraints, is not unique for N ≥ 4 pattern strate-

gies because there are more unknown parameters, {Cn}, than the number of restric-

tions. So in order to derive a unique solution, we employ the pattern entropy, of

Eq. (3.24), to optimize the patterns such that

{Cn} = arg max{Cn}kH({Ibn + Cn}k). (3.35)
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In this way, {Cn} can be optimized to achieve maximum distinctions among the

projected NP pixels with the same phase value φw. It should be noted that the

Property (4) can be modified for other purposes. For example, in order to reduce

the sensitivity to de-focus, the coding functions achieving the most smooth patterns

(no inflection points) can be chosen. The coding functions {Cn} for N = 4 pattern

strategy when P = 4 is shown in Fig. 3.4.

Finally, after obtaining the coding functions, SLI patterns are computed through

Eq. (3.28), which take advantage of the remaining dynamic range and consist of the

base patterns {Ibn} with the period cue D, achieved through coding functions {Cn}.

For a pattern strategy where N = 4 and P = 4, the PCPS patterns are shown in

Fig. 3.5, where cross-sections of the four patterns indicate that the patterns, in each

period, are no longer sinusoidal waves due to the added coding functions. The spatial

intensity efficiency and pattern entropy is listed in Table 3.3. Compared with N = 4

and P = 4 high frequency PMP, the spatial intensity efficiency is increased from

63.80% to 91.53%, and the pattern entropy is increased from 14.00 bits to 15.91 bits.
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Figure 3.5: Cross sections of the PCPS patterns when N = 4 and P = 4 for (a) I0,
(b) I1, (c) I2, and (d) I3.
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Table 3.3: Comparison of spatial intensity efficiency and pattern entropy.

4 patterns 4 periods strategy PMP PCPS

Spatial intensity efficiency 63.80% 91.53%
Pattern entropy 14.00 bit 15.91 bit

3.3 De-codification of received images

Modulation and wrapped phase

In this section, we consider how the captured images are decoded in the camera space.

After a set of illumination patterns described in Eq. (3.28) have been projected

upon a target object, there are three types of information we need to obtain: (1)

the modulation of scanned object, (2) the wrapped phase, and (3) the period cue.

With regards to modulation, the parameter M(xc, yc) = α(xc, yc)B, representing

the amplitude of the observed high frequency signal reflected off the target, can be

derived according to Eq. (3.12). The modulation M is used as the texture image for

the 3-D reconstruction. The wrapped phase value, φw, is calculated by Eq. (3.9),

where through the definition of U and V , it is clear that the coding functions {Cn}

will not affect φw and M .

In order to achieve real-time operation, there are two facts that should be noticed:

(1) the computational cost of sin(·), cos(·), and arctan(·) in Eqs. (3.9) and (3.12) is

high and (2) the value range of received images inside the camera are fixed. For in-

stance, given an 8-bit gray scale camera, illumination pattern Icn(xc, yc) is represented

as the integers in the range [0, 255]. Thus, it becomes possible for us to build look-

up table (LUT) based algorithms for resolving both Eqs. (3.12) and (3.9)such that

M(xc, yc) and φw(xc, yc) are obtained with very low computational cost, and because
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B in Eq. (4.11), is constants of the projector, the albedo α(xc, yc) is obtained by

α(xc, yc) =
M(xc, yc)

B
. (3.36)

Furthermore, the φw is initially decoded into φi as shown in Fig. 3.2.

De-codification of period cue

The purpose of decoding the period cue is to find the period pi(xc, yc) at the pixel

(xc, yc) in the received images. To do so, we present two methods for this purpose:

(1) a temporal method, which decodes the period number point by point, and (2) a

hybrid method, which decodes the period number with the help of spatial unwrapping

approaches. The temporal period decoding attempts to identify the pi(xc, yc) based

on the period cue value D(xc, yc) of each point. It decodes the phase point by point

with no dependence on neighboring points. The D(xc, yc) value is calculated from

Eq. (3.20), which may vary depending on the definition of FD(·) in Eq. (3.20).

Particularly in a 4 pattern strategy, D(xc, yc) is computed as

D(xc, yc) =
Cc

0(xc, yc) + Cc
2(xc, yc)− Cc

1(xc, yc)− Cc
3(xc, yc)

2

=
(Ic0(xc, yc) + Ic2(xc, yc))− (Ic1(xc, yc) + Ic3(xc, yc))

2α(xc, yc)
, (3.37)

where α(xc, yc) is obtained from Eq. (3.36).

The parameter, D(xc, yc), is only related to the coding functions {Cn(xc, yc)}. So

once φi(xc, yc) and D(xc, yc) are obtained as shown in Fig. 3.6, the period pi(xc, yc)

is calculated by

pi(xc, yc) = round

(
1

2π
(2P iπ

D(xc, yc)− inf{R}
sup{R} − inf{R}

− φi(xc, yc))− 0.5

)
, (3.38)
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Figure 3.6: The initial unwrapped phase is finally unwrapped according to the period
cue. The period cue is scaled into [0, 2P iπ).

where sup, inf, and R are defined in Sec. 3.2, P i is the constant number of periods after

initial decoding and round(·) notes the rounding function of mapping the operand to

the nearest integer value. Thus, the phase Φ(xc, yc) is obtained by

Φ(xc, yc) = φi(xc, yc) + 2πpi(xc, yc), (3.39)

which is used for reconstruction based on pre-calibrated triangulation. For the 4

patterns strategy, when P = 4, the period will be correctly decoded, in the presence

of noise, as long as the absolute error in period cue, eD(xc, yc), is smaller than 0.126.

That is when D(xc, yc) is scaled to [0, 4π] as shown in Fig. 3.6, the absolute error

eD(xc, yc) is smaller than π.

We note that, when the period number P increases and since the R in Eq. (3.38) is

unchanged, the points with incorrect decoded period increase. So instead of decoding

the period temporally, the spatial unwrapping approaches [96,89,90] can be combined

with temporal period cues for indexing the period with higher accuracy. As such,

we propose hybrid de-codification where the initial decoded phase image is further

processed line by line. As illustrated in Fig. 3.7 (left), the processed phase line is
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Figure 3.7: The (top) phase line is segmented according to the period cue line where
period cue is scaled to [0, 2P iπ). The (bottom) phase segment is unwrapped with-
out knowing the start period of the segment such that distance exists between the
unwrapped phase and the period cue line.

first segmented according to the corresponding period cue line. Then, the segment is

unwrapped into segmental unwrapped phase, φs, as shown in Fig. 3.7 (right). Since

the start period, in pixels 287 to 322, is unknown, there is a distance between the

scaled period cue D and φs. So the start period pi is computed as

pi = round

(
1

2π
(2P iπ

D − inf{R}
sup{R} − inf{R}

− φs)− 0.5

)
, (3.40)

which is similar to Eq. (3.38) except that (2P iπ D−inf{R}
sup{R}−inf{R} − φs) is the average

distance between D and φs. This averaging reduces the degrading effect from noise

and gives a correct period value pi. Lastly, the final decoded phase, Φ, of the segment
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is obtained by adding φs with 2piπ as Eq. (3.39).

3.4 Accuracy analysis

In practice, uncertainty in Icn(xc, yc) is introduced from camera noise [104] and pro-

jector noise [45], as well as other sources [87]. Since these effects degrade the quality

of 3-D reconstructions, many studies have been performed on noise analysis to im-

prove the signal to noise ratio through pattern strategy optimization [86]. In doing

so, several researchers [74, 85, 86] have proposed modeling the combination of noise

sources as additive, white, Gaussian noise, wc(xc, yc) ∼ N(0, σ2). Thus, the captured

images, Icn(xc, yc), in Eq. (3.2) can be expressed as

Ĩcn(xc, yc) = α(xc, yc)
[
In(xj, yj)

]
+ α(xc, yc)β(xc, yc) + wcn(xc, yc), (3.41)

where ·̃ denotes the observed variable polluted by noise. With the same period p, the

phase can be regarded as unit frequency, i.e. P = 1. The phase value with noise,

Φ̃(xc, yc), is then calculated by

Φ̃(xc, yc) = arctan

[∑N−1
n=0 Ĩ

c
n(xc, yc) cos(2πn

N
)∑N−1

n=0 Ĩ
c
n(xc, yc) sin(2πn

N
)

]

= arctan

[
N
2
M(xc, yc) sin(Φ(xc, yc)) +

∑N−1
n=0 w

c
n(xc, yc) cos(2πn

N
)

N
2
M(xc, yc) cos(Φ(xc, yc)) +

∑N−1
n=0 w

c
n(xc, yc) sin(2πn

N
)

]
.(3.42)

Since for real-valued numbers a and b with ab > −1,

arctan(a)− arctan(b) = arctan

(
a− b
1 + ab

)
, (3.43)

then phase error Φe is obtained by

Φe(x
c, yc) = Φ(xc, yc)− Φ̃(xc, yc)
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= arctan

[
sin(Φ(xc, yc))

cos(Φ(xc, yc))

]

− arctan

[
N
2
M(xc, yc) sin(Φ(xc, yc)) +

∑N−1
n=0 w

c
n(xc, yc) cos(2πn

N
)

N
2
M(xc, yc) cos(Φ(xc, yc)) +

∑N−1
n=0 w

c
n(xc, yc) sin(2πn

N
)

]

= arctan

(
T (xc, yc)

S(xc, yc)

)
, (3.44)

where

S(xc, yc) = M(xc, yc) +
2

N

N−1∑
n=0

wcn(xc, yc) sin(Φ(xc, yc)− 2πn

N
) (3.45)

and

T (xc, yc) =
2

N

N−1∑
n=0

wcn(xc, yc) cos(Φ(xc, yc)− 2πn

N
). (3.46)

Further, it can be shown that S(xc, yc) and T (xc, yc) are Gaussian, and their corre-

lation can be estimated by

E[S(xc, yc)T (xc, yc)] = σ2
N−1∑
n=0

sin(2Φ(xc, yc)− 4πn

N
) = 0. (3.47)

Thus, S(xc, yc) and T (xc, yc) are independent. The joint Probability Density Function

(PDF) of Φe and M̃ is then given by

fM̃,Φe
(m̃, φe) =

Nm̃

4πσ2
exp

[
−N (m̃)2 +M2 − 2m̃(Mcos(φe))

4σ2

]
, (3.48)

as derived in [105]. Integrating Eq. (4.28) over M̃ yields the marginal PDF for Φe

given by

fΦe(φe) =
1

2π
exp

[
−NM

2

4σ2

] [
1 + κ

√
π exp(κ2)(1 + erf(κ))

]
, (3.49)

where erf(·) is the error function and

κ =

√
N

2

M

σ
cos(φe). (3.50)
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With sufficiently large values of
√
NM√
2σ

(>3), the error function of Eq. (4.30) will be

close to 0. The term, κ
√
π exp(κ2)(1+erf(κ)), will, therefore, dominate the constant

1 such that Eq. (4.29) reduces to

fΦe(φe) ≈
√
NM cos(φe)

2
√
πσ

exp

[
−NM2 sin2(φe)

4σ2

]

≈
√
NM

2
√
πσ

exp

[
−NM2φ2

e

4σ2

]
, (3.51)

which can be considered a zero-mean, Gaussian distribution. Thus, the variance of

Φe is approximated by

σ2
Φe(x

c, yc) ≈ 2σ2

NM̃2(xc, yc)
. (3.52)

When using high frequency patterns, Φ(xc, yc) is decoded and scaled into [0, 2π)

before 3-D reconstruction. Thus, the phase error, Φe(x
c, yc), is divided by P so that

Eq. (4.38) becomes

σ2
Φe(x

c, yc) ≈ 2σ2

NP 2M̃2(xc, yc)
, (3.53)

which is the same as that of the two frequency PMP strategy derived by Li [74] with

only half the number of patterns. Also from Eq. (4.39), it should be noted that when

P is less than M(xc, yc), where M(xc, yc) is generally larger than 64 on 8 bpp devices,

increasing P will more efficiently reduce σ2
Φe(x

c, yc) than increasing M(xc, yc).

3.5 Experimental results and discussion

To demonstrate the proposed pattern strategy, we developed a prototype SLI system

shown in Fig. 4.17, based on an 8 bpp, monochrome, Prosilica GC640M, gigabit

ethernet camera with 640 × 480 pixel resolution. The projector is composed of a
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Figure 3.8: The prototype system setup for PCPS.

Texas Instrument’s Discovery 1100 board with ALP-1 controller and LED-OM with

225 ANSI lumens. The resolution of the 8 bpp, monochrome, projector is 1024× 768

(W × L), with a maximum frame rate of 150 fps. The camera and projector are

synchronized by an external triggering circuit with a baseline distance between camera

and projector of 120 mm. During the experiments, the scanned object was placed

around 600 mm away. Gamma correction was performed on the received images,

while a lookup table was created to correct optical distortion. We programmed the

experimental system using Microsoft Visual Studio 2005 with managed C++. As our

processing unit, we used a Dell Optiplex 960 with an Intel Core 2 Duo Quad Q9650

processor running at 3.0 GHz.

In the first two experiments, stationary objects were scanned with a camera ex-

posure time of 2.4 ms. Due to the low illumination of our projector, the standard

deviation of system noise, σ, was 7.2413, much higher than SLI systems using com-

mercial projectors, e.g. 2.8309 in Li’s system [74]. In order to scan moving objects
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Figure 3.9: Three white boards were scanned using PCPS. (a) The wrapped phase
image. (b) The phase image after initial decoding. (c) The period cue image. (d) The
phase values on the 500th column of (a). (e) The phase values on the 500th column
of (b). (f) The phase values on the 500th column of (c).

in our third experiment, the exposure time was reduced to 0.8 ms where σ increased

to 9.9165.

Depth ambiguities

In the first experiment shown in Fig. 3.9, three separate white foam boards were

carefully placed and scanned such that the left-most board was isolated from two

boards otherwise positioned to create a phase ambiguity. In Fig. 3.9 (a) is the cor-

responding phase term, φw, while Fig. 3.9 (d) shows φw for the 500th image column,

which dissects that ambiguous foam boards in half. Visually, there is no apparent

discontinuity in phase to suggest that more than two distinct objects appear in the

scene in either (a) or (d).
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Figure 3.10: Final decoded phase results. (a) Temporal decoded phase. (b) The
phase values on the 500th column of (a). (c) Hybrid decoded phase. (d) The phase
values on the 500th column of (c).

After initial decoding by means of spatial phase unwrapping [93] in Fig. 3.9 (b)

and (e), the phase values φi of the right two boards still appear to form a single,

continuous surface; however, the depth discontinuity does show up in the period

cue image of Fig. 3.9 (c) and (f), that is the D information. Thus, PCPS works

to detect otherwise ambiguous phase, where it should be noted that because of the

higher resolution of the projector versus that of camera and because of the de-focus

problem [81], the received information should be low-pass filtered first. As a result,

the inflection points of phase in Fig. 3.9 (c) and (f) are not as sharp as our theory

predicts. In practice, the phases of these points can be corrected after obtaining the

final decoded phase [106,81,63].

The final 3-D reconstruction is shown in Fig. 3.10, where because of the heavy
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Figure 3.11: The 3-D reconstruction of three boards through PCPS using hybrid
decoding method showing the (left) front, (middle) side, and (right) top views.

noise in our system (σ = 7.2413), the temporal period decoding method may produce

wrong period numbers for some heavily contaminated points, e.g. the impulse in

Fig. 3.10 (b). But even in our noisy system with P = 16, 99.56% points were cor-

rectly decoded through the temporal approach. By implementing the hybrid method,

however, all the points were correctly decoded (Fig. 3.10 (c) and (d)). After having

obtained these final phase images by means of the hybrid method, 3-D surfaces were

reconstructed as illustrated in Fig. 3.11. The side and top views, of the reconstructed

surfaces, demonstrate that the proposed PCPS works correctly in situations like Fig.

1.16where spatial unwrapping fails [93] and temporal approaches only work by pro-

jecting additional patterns [96].

Accuracy

In order to demonstrate the accuracy of the PCPS in the presence of noise and object

texture, we performed the second experiment by scanning a textured, flat, poster

board (Fig. 3.12). The approximate size of the board is 210 × 175 mm (H×L). The

front view and the top view of the 3-D reconstruction are shown in Fig. 3.12, where

phase was obtained through 4 pattern 16 period PCPS using the hybrid decoding
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Figure 3.12: The 3-D reconstruction of a flat board with intensity texture, through 4
pattern, 16 period PCPS using hybrid decoding method showing the (top) front and
(bottom) top view.

method. The texture was the modulation image obtained from Eq. 3.12.

From Eq. (4.39), the variance of phase error, σ2
φe , increases linearly with system

noise, σ2, and decreases with the number of patterns N , the number of periods

P , and the modulation M . This relationship is also true for PMP strategies as

demonstrated in [74]. Thus, in theory the accuracy of PCPS is the same as PMP

when scanning stationary objects, and to compare the accuracy of PCPS and PMP

through experiments, the textured board was scanned 800 times using PCPS and

two-frequency PMP. The theoretical value was obtained from Eq. (4.39), and as

demonstrated, the experimental variances of phase error of PCPS and two frequency
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Figure 3.13: (a) The phase error variance changes with the number of periods P . The
number of patterns was 4. The standard deviation of system noise was 7.2413. The
modulation was 32.55. (b) The phase error variance changes with modulation M .
The number of patterns was 4. The standard deviation of system noise was 7.2413.
The number of periods was 16.
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Figure 3.14: Realtime 3-D reconstruction employing proposed PCPS strategy. The
frame rate achieves 120 fps.

PMP are very close for all numbers of periods P (see Fig. 3.13 (left)) and modulation

values M̃ (see Fig. 3.13 (right)). However, it should be noted that 8 patterns were

used in two frequency PMP strategy, whereas only 4 patterns were projected in PCPS.

Thus, PCPS achieves the same accuracy as high frequency PMP by using only half

the number of patterns.

Execution performance

In the third experiment, a stationary, textured, statue and a moving hand were

scanned as shown in Fig. 3.14, and the execution performance of PCPS was analyzed.

In order to achieve a high speed of scanning, the exposure time of the camera was

reduced to 0.8 ms, resulting in an increased variance of 9.9165. Using lookup table

(LUT) 3-D reconstruction techniques, the system realizes 120 fps for 3-D acquisition

and reconstruction. Here, we projected the 4 pattern PCPS set. Since high frequency

phase shifting patterns are more sensitive to motion, we employed 4 periods for motion

scanning. The decoding method applied was temporal period decoding. As shown
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Table 3.4: Analysis of Execution Performances.

Function Time cost Remark

Wrapped phase and modulation 1.72 ms φw +M
Period cue 0.59 ms D

Initial decoded phase 0.96 ms φi

Final decoded phase 1.24 ms Temporal period decoding
Overall data processing 7.87 ms Include 3-D reconstruction

Figure 3.15: (a), (b), (c) and (d) are depth rendering 3-D reconstructions of a sta-
tionary textured angel and a moving hand. (e), (f), (g) and (h) are top views of (a),
(b), (c) and (d). The standard deviation of system noise was 9.9165. No filter was
applied.

in Fig. 3.15, the two separate surfaces were successfully reconstructed in real time.

The results look noisy in the high noise environment of the prototype system, as no

smoothing process was performed to reduce the computational cost.

To observe the experimental time cost, we implemented the algorithm in our

system by using only one CPU core. While points corresponding to low modulation

strength were not displayed, our tests were based upon processing the full resolution

of 640 × 480 pixels. The processing time each important procedure, averaged over

10,000 frames, is listed in Table 3.4. The period decoding is by means of the temporal

method. The computational cost of hybrid decoding depends on the scene, since

segmentation is involved. However, the one dimensional segmentation is done by
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determining the period cue values. Indeed, the hybrid method will not introduce

much more computational workload. The computation frame rate can be further

improved by ignoring the low modulation points (un-illuminated points) and using

multiple cores or GPU programming. In our case, the computation speed is fast

enough for the maximum frame rate of the camera/projector pair. For comparison,

we also implement Li’s algorithm [74], while Zhang et al. reported a reconstruction

frame rate of 25.56 fps with a resolution of 532× 500 when employing quality-guided

phase unwrapping and using GPU processing on nVidia Quadro FX 3450 [102]. The

comparison result is listed in Table 3.5.

In summary, the proposed PCPS strategy uses the remaining 36.20% intensity

dynamic range to add the second reference signal. As shown in the first experiment,

the PCPS works in situations where traditional phase shifting methods either fail or

require more patterns, with high system noise standard deviation (7.2413). In the

second experiment, we demonstrated Eq. (4.39), showing that the proposed PCPS

method achieves the same accuracy as high frequency PMP with half the number of

patterns. In the last experiment, we implemented the PCPS strategy in a real-time

system that can achieve 120 fps for 3-D acquisition and reconstruction. The analysis

of execution performance shows that the computational cost of PCPS is considerably

low. Finally, it should be noted that for the SLI systems with lower noise level than

our prototype system, the quality of both phase and period cue will be improved,

leading to more accurate unwrapped phase values.
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Table 3.5: Comparison of Execution Performances.

Strategy Time cost Remark

Temporal unwrapping,
Two-frequency PMP [74] 86.23 ms resolution (640× 480),

one core of 3.0 GHz CPU
Spatial unwrapping,

2 + 1, quality-guided method [102] 39.12 ms resolution (532× 500),
nVidia Quadro FX 3450 GPU

Period cue decoding,
PCPS 7.87 ms resolution (640× 480),

one core of 3.0 GHz CPU
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Figure 3.16: Nonlinear period cue D in 4 periods when the number of patterns is 3.

Generalization

For simplicity, we have presented the PCPS strategy and performed the experimental

demonstration using 4 pattern PMP strategy. In fact, this new pattern strategy

can be extended to any number of patterns as long as the pattern is obtained from

Eq. (4.11) and satisfies the four coding properties in Sec. 3.2. As a phase shifting

pattern strategy, the theoretical minimum number of patterns of PCPS is 3. Generally

speaking, fewer patterns (N ≤ 6) are desired to scan moving objects. With more

patterns, the accuracy of phase can be increased as shown in Eq. (4.39), and it also

gives a larger range of period cue D such that a more accurate period number can be

decoded.

As the first example for N = 3, the base pattern is derived from Eq. (4.11). From

Eqs. (3.29) and (3.30), the coding functions have C0(yj) = C1(yj) = C2(yj). Thus,

we define Eq. (3.20) as

D(yj) =
C0(yj) + C1(yj) + C2(yj)

3
. (3.54)

The period cue is designed as shown in Fig. 3.16, which is no longer linear. The
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decoding process is similar to the 4 pattern strategy except that the environment

illumination, β(xc, yc), can not be removed from D(xc, yc). Thus to reduce the ef-

fect of β(xc, yc), the wrapped phase, φw(xc, yc), is first mapped to an initial decoded

phase φi(xc, yc) where the points, with the same φi(xc, yc), are compared such that

the pi(xc, yc) with higher D(xc, yc) are assigned to 1 while the pi(xc, yc) with lower

D(xc, yc) are assigned to 0. The decoding process of 3 patterns is more complicated

than that of N > 3 pattern strategies, and limited by the number of patterns, it

becomes unreliable to decode patterns with P > 4 because of the environment illu-

mination β. The 3-D reconstruction results of 3 pattern PCPS with P = 4 are shown

in Fig. 3.17 (b).

As a second example, we present the pattern strategy when N = 6, where from

Eqs. (3.29) and (3.30), the coding functions satisfy C1(yj)+C2(yj) = C4(yj)+C5(yj)

and 2C0(yi) + C1(yj) + C5(yj) = 2C3(yj) + C2(yj) + C4(yj), which provide even

more coding freedom than 4 pattern strategy. Thus, it is possible to design more

complicated period cues such that higher accuracy period decoding can be achieved.

For simplicity, we define the period cue as

D(yj) =
2(C0(yj) + C3(yj))− (C1(yj) + C2(yj) + C4(yj) + C5(yj))

4
, (3.55)

which is also a linear period cue. The decoding process is similar to the 4 pattern

strategy, where because of the additional freedom, the range of D(yj) is increased.

Comparison between Eqs. (3.37) and (3.55) shows that the denominator increases

from 2 to 4 such that the period cue noise is reduced by half. The 3-D reconstruction

results of 6 pattern PCPS with P = 32 is shown in Fig. 3.17 (d).
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Figure 3.17: 3-D reconstructions for different number of patterns strategies. The
standard deviation of system noise was 7.2413. No filter was applied. (a) Scanned
Object. (b) The depth rendering result using 3 patterns 4 period PCPS. (c) The
depth rendering result using 4 patterns 16 period PCPS. (d) The depth rendering
result using 6 patterns 32 period PCPS.

Applying the period coded method to other phase shifting methods is similar

to the procedures of PMP as long as our four stated properties are satisfied. It

should be noted that, in this chapter, the SNR of the high frequency information

is unchanged; however in practice, the projector amplitude value B, in Eq. (4.11),

can be reduced to produce a reduction in SNR of the high frequency signal such

that the M value, in Eq. (4.39), is reduced, but the smaller B value will leave more

dynamic range for period codification. As a result, the P value, in Eq. (4.39), will be

increased, and, based on Eq. (4.39), when the P value is less than M , the increasing

of P will more efficiently reduce the phase error than increasing M . By reducing the

projector modulation, the period information can be embedded into phase shifting

methods even with the spatial intensity efficiency of 100%. The tradeoff between the

dynamic ranges of the high frequency phase and the period cue indeed depends on

the distribution of system noise.

This chapter presents two innovative concepts of spatial intensity efficiency and
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pattern entropy for generalized phase shifting methods. When the spatial intensity

efficiency is less than 100%, the remaining dynamic range of projection patterns can

be used for embedding a secondary signal. The pattern entropy can be used to

optimize the embedded secondary signal’s strength. Based on these two concepts, we

have developed a novel period information embedded pattern strategy (PCPS) for

fast, reliable 3-D data acquisition and reconstruction. The whole strategy includes

codification of projected patterns, de-codification of captured images, a real-time

implementation, accuracy analysis, and execution performance analysis. A major

advantage of the proposed PCPS strategy includes removing the depth ambiguity

associated with traditional phase shifting patterns without reducing phase accuracy or

increasing the number of projected patterns. The computational cost of PCPS is low

and it can achieve 120 fps for 3-D acquisition and reconstruction. The data processing

procedure for phase and modulation can be extended to other phase shifting methods.

For future research, we will further exploit the remaining dynamic range such that

the accuracy of period cue and the number of periods in the 3 pattern strategy can

be improved. We will also work on the optimization between the dynamic ranges of

high frequency phase signal and the period cue.
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Chapter 4 HYBRID FRAMEWORK

Besides the pattern innovations, as we discussed in last two previous chapters, in order

to improve SNR and also reduce the reconstruction error cost by gamma and multiple

light pass, various other solutions have been proposed based upon post-processing

methods, as well as multi-view data fusion. There are many post-processing methods

existing for extracting the sub-pixel location of stripes based upon Steger’s curvilinear

structure detection method [107]. However, Steger’s method fails in certain cases,

such as in the study by Sun et al. [108], wherein many artificial lines resulted.

Various efforts have also been made at multi-channel 3-D measurement tech-

niques [109,110,111,112,113,114] that merge measurements from multiple cameras in

order to improve SNRs and, hence, 3-D reconstruction quality for a given number of

projected patterns. By having multiple cameras, the probability that correspondences

arise by chance is reduced, thereby resulting in better 3-D measurements [112]. How-

ever, employing such a multiple camera 3-D system brings the problem of merging

data from different views. As shown in Fig. 4.3, the 3-D reconstructions from different

views are mis-aligned due the reasons analyzed in [115, 116]. For achieving accurate

correspondences in the presence of phase distortion, phase stereo matching, or space-

time stereo, has been proposed as a multi-channel 3-D measurement technique, where

triangulation is performed between the component cameras without inclusion of the

projector [34,111,59]. Specifically, Scharstein and Szeliski employed phase to acquire

highly precise and reliable ground truth disparity measurements accurately aligned
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(a) (b)

(c) (d)

Figure 4.1: SLI 3D surfaces reconstructed using spot array patterns. Sixteen high
frequency PMP patterns are used to ensure the phase data quality. (a) The 3D surface
reconstructed through camera I and the projector. (b) The 3D surface reconstructed
through camera II and the projector. (c) The resultant surface by merging two
surfaces shown in (a) and (b). (d) An enlarged and rotated part of the surface shown
in (c) to illustrate the misalignment.

with stereo image pairs [34].

The framework of space-time stereo was also developed in [111, 113, 114, 59, 58,

61, 60] where the advantages for high accuracy and motion detection were shown.

In [111], Davis et al even proves that the framework would still work well by pro-

jecting unstructured light where illumination undergoes uncontrolled variation. The

conclusion is due to the fact that the unstructured light eliminates the ambiguities

when matching in space-time on the epipolar lines of two cameras. And by match-
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ing based on space-time windows, they recovered dynamic scenes successfully. The

advantage of the phase matching framework has also been presented by Zhang et al

in [59,58] who, based upon a synchronized multi-camera and multi-projector SLI sys-

tem, developed an algorithm that overcomes over-fitting deficiencies while employing

a novel template fitting and tracking procedure that fills in missing data and yields

point correspondences across the entire sequence.

Davis’ and Zhang’s works demonstrate the robustness of the phase matching

framework in motion detection and improving the SNR in SLI systems. However,

in none of these works has the distribution of errors been analyzed nor utilized, nor

was the texture or modulation data further exploited where errors exist in SLI sys-

tems [74,84,85,86,87] while decades of study on stereo-vision proves that 3-D geometry

can also be revealed from texture or modulation data [33, 117] alone. More recent

research shows that good quality 3-D reconstructions can be recovered especially in

high texture regions [112, 30]. Thus, how to utilize these three types of information

(phase, texture, and modulation) to maximize 3-D data acquisition efficiency becomes

a key question to the development of advanced SLI technologies.

To take full advantage of the information provided by texture and modulation data

for the purpose of improving phase-stereo matching, this chapter presents a multi-

modal data fusion and hybrid 3-D reconstruction framework for a two-camera SLI

system, where the pattern phase data obtained from the cameras is used to compute

stereo-vision correspondences through sub-pixel phase matching with object texture

used to eliminate ambiguities. Pattern modulation information will then be used to

estimate a phase error model for Kullback-Leibler (KL) divergence [118] analysis as
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a means of further refinement. KL divergence analysis is typically associated with

measuring the “distance” between probability distributions [118]. While some recent

techniques employ it to account for occlusion in stereo-vision models [119], it can

also be used as an error metric between noisy values. It is particularly relevant

for correspondence matching between camera views in the presence of noise and

uncertainty.

Based upon PMP, we employ the theoretical minimum three patterns while achiev-

ing a significant improvement in 3-D reconstruction quality, over conventional PMP

and stereo-vision techniques, that performs well in both rich and poor texture environ-

ments with complicated light paths and even in high contrast conditions. Although

we require the cameras to be synchronized to each other in software, the new method

is immune to the projector flicker and gamma distortion without rigorous synchro-

nization to the projector. And in the proposed framework, a rigorous synchronization

between cameras and projectors is not needed and the projector gamma distortion is

removed without extra calibration and compensation.

In summary, the unique contributions of this chapter include developing a hybrid

3-D reconstruction framework for multi-camera SLI systems that utilizes the notion

of stereo-vision to reduce phase matching ambiguities based on the correlation among

object texture images. But first, this chapter derives a statistical phase-error model

that is successfully applied, both theoretically and experimentally. As a result, the

3-D reconstructions are improved through a developed correspondence refinement

mechanism to reduce mis-registration among images, based on the derived phase

error model and KL divergence analysis. Modulation and phase information is fused
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for this purpose.

4.1 Stereo matching in phase

Various problems arise in SLI systems when a small number of patterns are used.

Especially in regions with rich texture, multi-lightpath or high contrast, phase data

tends to be inaccurate and noisy. The poor quality of phase data may be caused by

many factors: (i) rich texture, high contrast or multi-lightpath of the scanned object,

(ii) noise from cameras, projectors and ambient light, (iii) gamma distortion, (iv)

flickering problem, etc. Stereo vision, on the other hand, fails in regions with low

texture or areas in short of feature points.

An illustrative example is shown in Fig. 4.2. Fig. 4.2 (a) and (b) show the stereo

images of a rich-textured object and a poor-textured object. Fig. 4.2 (c) shows the

phase data along epipolar lines in a rich-textured region. When only three PMP

patterns are used, the phase data in such kind of regions is very noisy. Fig. 4.2 (d)

shows the intensity data along the epipolar lines in a poor-textured region. Due to

the lack of texture information and feature points, stereo vision techniques fail to

work in such kind of regions.

Performing PMP scan with two cameras and one projector yields two 3-D sur-

faces. We expect by fusing these two 3-D surfaces to obtain a higher resolution,

less distorted, and more wrapped version of 3-D fingerprints. The key to merge re-

constructed images from different cameras lies in finding the point correspondence

among cameras. Another problem associated with multi-camera SLI system is the

mis-alignment of 3-D data obtained from different views. Fig. 4.3 is used to illustrate
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Figure 4.2: A cartoon deer with rich texture and a white space plane with poor
texture. (a) The image I of objects captured by the first camera. (b) The image
II of objects captured by the second camera. (c) Cross sections of phase data in
the rectangular region marked in images I and II. With only three PMP patterns,
phase data is of poor quality and noisy. (d) Cross sections of intensity data in the
circular region marked in images I and II. Because of the poor texture information,
texture-based matching does not work well.

this problem. Figs. 4.3 (a) and (b) show the 3-D surfaces reconstructed from two

cameras using spot array patterns. However, when the two 3-D surfaces are posi-

tioned in the same coordinate system, it can be seen that there is a displacement

between these two surfaces, as shown in Fig. 4.3 (c) and (d). Such a misalignment

illustrated may be caused by many factors. Some of them are analyzed in [115,116].

Generally speaking, in a multi-views system, data fusion should be performed at the
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(a) (b)

(c) (d)

Figure 4.3: SLI 3D surfaces reconstructed using spot array patterns. Sixteen high
frequency PMP patterns are used to ensure the phase data quality. (a) The 3D surface
reconstructed through camera I and the projector. (b) The 3D surface reconstructed
through camera II and the projector. (c) The resultant surface by merging two
surfaces shown in (a) and (b). (d) An enlarged and rotated part of the surface shown
in (c) to illustrate the misalignment.

pixel level instead of at the surface level.

The points mismatching, illustrated in Fig. 4.3, can be caused by many factors.

Some of them are analyzed in [115, 116]. A few remedying approaches have been

proposed in [116, 120, 42]. In a typical optical system, both cameras and projector

will introduce distortions due to the curving lens surface and the limited aperture

size. Using the PMP technique, the temporal multiplexed illumination patterns can

offset the projector distortion, so the camera distortion remains the main cause of
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the mismatching. To overcome the multiple 3D surfaces mismatching caused by the

distortion of camera lenses, we propose a method that can achieve the precise point

correspondence between two 3D surfaces based on the notion of stereo vision.

Traditional stereo matching is to find the correspondence of points from two or

more planes. Stereo matching has been studied for decades in computer vision,

which can be broadly classified into feature based [25, 121, 26] and point based ap-

proaches [122, 123]. Generally speaking, when come to two or more views geometry,

the fundamental matrices and epipolar lines [27, 124] can be derived using an exter-

nal calibration target. The corresponding points from different views must lie on the

same epipolar line. That is, stereo matching greatly reduces the search for correspon-

dences. The point correspondences deduce the stereo disparities. Through stereo

triangulation, disparities can be converted into coordinates of points in 3D space.

In this section, we present a new approach for 3D surface reconstruction with

multiple cameras SLI systems by incorporating PMP technique into stereo vision

correspondence. We employ epipolar geometry and sub-pixel technique to find the

correspondence between phase images from different cameras and reconstruct the 3D

surface. The system performance is further optimized by tuning three parameters:

the alignment angle of patterns, the number of patterns, and the geometry among

cameras and the projector. The optimized 3D surface reconstruction by our method

is also compared with the performance of the conventional correlation based method.
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Rotated structured light

Traditional PMP projects either vertical or horizontal sine wave patterns onto the

surfaces under scanning so that the vertical or horizontal correspondence information

between the camera and the projector can be directly derived from the computed

phase data.

Here, we use patterns rotated in different angles to choose the optimal pattern

alignment. Denote r as the alignment angle, Lp as the image length, and Hp as the

image height. If we use single frequency patterns, then

f =
1

Lpl
, (4.1)

where Lpl is the length of the pattern. If the pattern alignment is horizontal, i.e.

r = 0, Lpl is the height of the pattern. If the pattern alignment is vertical, i.e. r = π
2
,

Lpl is the length of the pattern. In between,

Lpl =
Lp

sin(r)
, (4.2)

for R < r < π/2, and

Lpl =
Hp

cos(r)
, (4.3)

for 0 < r ≤ R, where R is the arctan(·) of the image length-to-height ratio. Thus, a

rotated pattern with an angle r can be expressed as

In(xp, yp) = Ap +Bp cos[2πp(sin(r)yp + cos(r)xp)− 2π
n

N
]. (4.4)

Several created patterns are shown in Fig. 4.4.

From the camera point of view, the captured image is distorted by the scanned

surface’s topology. The reflection and data processing equations are still unchanged

112



www.manaraa.com

(a) (b) (c)

Figure 4.4: Three image patterns with different rotation angles. (a) shows the vertical
pattern where r = π/2. (b),shows a pattern where r = π/4. (c) shows the horizontal
pattern where r = 0.

as we illustrated in chapter I. After converting the phase from [0, 2π) to [0, 255], we

can get the 8-bit gray level phase image, as shown in Fig. 4.5.

(a) (b) (c)

Figure 4.5: (a) The target image. (b) The phase image of the target when r = 0. (c)
The phase image of the target when r = π/4.

The target shown in Fig. 4.5 (a) is used to evaluate the 3D reconstruction per-

formance of the proposed rotated pattern PMP and sub-pixel stereo phase matching.

Three pattern numbers in use, 25, 40 and 55, are for both traditional PMP and the

rotated pattern PMP. Ten different angles are tested for each rotated pattern PMP.

The results are given in Fig. 4.8. The reconstruction errors include the mean square

root errors in x, y and z directions of the world coordinates in the unit of mm.

Figure 4.7 shows the reconstructed surface of the target using traditional PMP

technique with 40 patterns. Figure 4.8 shows the 3-D reconstruction errors using
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Figure 4.6: Plot of PMP reconstruction errors vs. rotation angles. The three straight
lines are the errors of traditional PMP, where the pattern rotation angle is a constant.

rotated patterns in contrast to using traditional patterns, where the rotation angle

is 0. With an increase of pattern number, the errors of 3-D surface reconstruction

drop as expected. For the rotation pattern PMP, the errors reach their maxima

as the rotation angles go near π/2. This is because in our experimental system

the camera-projector line is nearly vertical. Usually the best reconstruction results

could be obtained when the pattern angle is perpendicular to the camera-projector

line. In theory, when the pattern alignment is parallel to the camera-projector line,

little information on can be extracted, resulting in infinite reconstruction errors. In

practice, as the camera and the projector are not perfectly vertically aligned, some

information on still can be derived even using vertical patterns. It also can be seen

that when the number of patterns is larger than 25, there is no much room to improve

the reconstruction performance.

114



www.manaraa.com

(a) (b)

(c) (d)

Figure 4.7: Images of the 3-D reconstructed surface from four different perspectives
using traditional PMP with 40 patterns.

After obtaining the phase, we employ sub-pixel stereo phase matching to find the

correspondence between cameras. 3-D reconstruction from multiple images has been

given in [124,125]. After the correspondences between the visible points from the two

camera images is built by the approach described above. We use the linear camera

model to reconstruct the 3-D surfaces.
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The transformation equations from real world to camera is given by

xc =
mwc

11x
w +mwc

12 y
w +mwc

13 z
w +mwc

14

mwc
31x

w +mwc
32 y

w +mwc
33 z

w +mwc
34

, (4.5)

and

yc =
mwc

21x
w +mwc

22 y
w +mwc

23 z
w +mwc

24

mwc
31x

w +mwc
32 y

w +mwc
33 z

w +mwc
34

. (4.6)

where mwc
ij is the parameter of world-to-camera matrix Mwc, which is calculated from

camera calibration,

A =

 mwc
11 mwc

12 mwc
13 mwc

14

mwc
21 mwc

22 mwc
23 mwc

24

mwc
31 mwc

32 mwc
33 mwc

34

 , (4.7)

Denote Mwc1 as the world-to-camera matrix of the camera I, and Mwc2 for the camera

II. For a 3-D point, the relation between its world coordinates (xw, yw, zw) and its

projection coordinates (xc1, yc1) and (xc2, yc2) can be described as Q[xw, yw, zw]T = R,

where

Q =


mwc1

31 xc1 −mwc1
11 , mwc1

32 xc1 −mwc1
12 , mwc1

33 xc1 −mwc1
13

mwc1
31 yc1 −mwc1

21 , mwc1
32 yc1 −mwc1

22 , mwc1
33 yc1 −mwc1

23

mwc2
31 xc2 −mwc2

11 , mwc2
32 xc2 −mwc2

12 , mwc2
33 xc2 −mwc2

13

mwc2
31 yc2 −mwc2

21 , mwc2
32 yc2 −mwc2

22 , mwc2
33 yc2 −mwc2

23

 , (4.8)

and

R =


mwc1

14 −mwc1
34

mwc1
24 −mwc1

34

mwc2
14 −mwc2

34

mwc2
24 −mwc2

34

 . (4.9)

The pseudo-inverse solution can be derived as

[xw, yw, zw]T = (QTQ)−1QTR (4.10)

The target shown in Fig. 4.5 (a) was used again to test the 3-D reconstruction errors

of the proposed sub-pixel stereo phase matching technique. We used ten different

rotation angles. For each rotation angle, three different pattern numbers, 55, 25 and
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Figure 4.8: Reconstruction errors using sub-pixel stereo phase matching vs. the
rotation angles. The upper three curves are errors in y direction. The lower three
curves are the errors in x direction.

10, were chosen. The errors of matching point pair estimation are measured in mean

square root error of x (vertical) and y (horizontal) directions of image coordinates.

The performance of sub-pixel stereo phase matching depends on both the quality

of phase information and the angle between pattern alignment and epipolar lines.

If the pattern alignment is parallel to one epipolar line, all the points on this line

will have the same phase value; in that case, the stereo matching by phase becomes

impossible. In our prototype system, the two cameras are positioned horizontally;

therefore the vertical patterns should yield the best reconstruction results. However,

Fig. 4.8 shows that the best results happen at the rotation angle of near 0.8, instead

of π/2. That is because the reconstruction performance also relies on the quality of

phase information. As Fig. 4.8 shows, the quality of phase information, equivalent
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to depth errors, degrades most when the pattern alignment goes near π/2. Besides,

there is an angle between the alignments of two cameras, which can not generate a

set of parallel horizontal epipolar lines as expected.

It can also be seen from Fig. 4.8 that the error in x direction (vertical) is much less

than those in y direction (horizontal). Since the epipolar lines are near horizontal,

such a stereo vision geometry helps reduce the errors in x direction. In addition,

although the phase information degrades most when the pattern rotation angle goes

near π/2 as shown in Fig. 4.5 (a), the sub-pixel stereo matching reconstruction, even

in y direction, does not degrade as much as conventional PMP reconstruction does.

It seems that the proposed sub-pixel stereo matching is quite robust to the quality of

the phase information extracted using the PMP technique.

Optimization of camera-projector geometry

Sub-pixel stereo matching in phase with vertical patterns and three pattern numbers,

15, 30, and 60, are applied in optimizing the camera-projector-camera geometry. The

matching error is defined as the mean square root error between the actual matching

points and the estimated matching points of the target images. To obtain better

phase information, multi-frequency patterns were used [72]. Three frequencies were

chosen as 1, 8, and 32.

Here, we denote the horizontal distance between two cameras as L and the vertical

distance between the center of cameras and the projector as H. Figure 4.9 illustrates

the point matching errors vs. log(H/L). The mean square root errors in x and y

directions using multi-frequency patterns are reduced, compared to the case of using
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single frequency patterns, as the quality of phase information is much improved by

using multiple frequencies patterns. As shown in Fig. 4.9, the matching errors drop

as the log ratio of H/L decreases. It suggests that the best position of the projector

is the middle point of two cameras.

Figure 4.9: Matching errors in pixel vs. log ratio of H/L. The upper three curves are
the errors in y direction. The lower three curves are the errors in x direction.

Figure 4.10 shows the reconstruction results of the target by the proposed sub-

pixel phase based stereo matching and the conventional correlation based stereo

matching. For the proposed method, the errors are 0.1485 pixels in x direction and

0.5833 in y direction. For the conventional method, the errors are 1.5293 pixels in

x direction and 15.4825 pixels in y direction. Compared to the traditional stereo

matching, the results of sub-pixel stereo phase matching are more accurate and more

robust to noise. While traditional correlation based stereo matching may achieve

higher quality reconstruction for objects with rich texture information, the proposed
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phase based stereo matching approach can effectively reconstruct 3-D surfaces under

all the texture and illumination conditions.

(a)

(b)

Figure 4.10: (a) Surfaces reconstructed by sub-pixel stereo matching, with 3 frequen-
cies of 1, 8, and 32, 10 patterns for each frequency. (b) Surfaces reconstructed by
traditional correlation based stereo matching.

In this section, we propose a phase information based sub-pixel stereo matching

for multi-perspective structured light illumination 3D surface reconstruction. We

also investigate the impact of pattern rotation angles, pattern numbers, and camera-

projector-camera geometry on the reconstruction performance. The advantages of

using multiple cameras in SLI scanning over the single camera SLI system include

its higher robustness to the quality of phase information, as well as the measurement

noise, and its capability to acquire surrounding information of objects under exami-
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nation. Compared to the traditional correlation based stereo matching, the proposed

method can produce high quality 3D surface reconstruction despite the texture and

illumination conditions.

4.2 Phase error modeling

Of many proposed SLI methods, the technique of phase measuring profilometry

(PMP), or sinusoidal phase-shifting pattern, is one of the most widely used and

precise strategies [84, 75, 76, 77, 70]. The canonical PMP technique employs a set,

{Ipn : n = 1, 2, ..., N}, of single frequency sinusoidal wave patterns, such that a point

in the projector plane, (xp, yp), is assigned according to:

Ipn(xp, yp) = Ap +Bpcos(2πfyp − 2πn

N
) (4.11)

where Ap and Bp are constants of the projector and f is the frequency of the sinusoidal

wave [70]. Note the dependence of the phase term, 2πfyp, on the vertical coordinate

inside the projector, yp, as this is the parameter that will be used when triangulating

with the camera, which is assumed to be positioned vertically above the projector.

As discussed in [74], larger values of f typically result in smoother 3-D surfaces in the

presence of sensor noise but also introduce ambiguities in the phase reconstruction

necessary for reconstructing the 3-D surface.

After the set of illumination patterns have been projected upon a target object, an

off-axis camera captures the scene such that the sinusoidal wave patterns are observed

after being distorted by the surface topology under inspection. The resulting set of
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captured images, {Icn : n = 1, 2, ..., N}, can, therefore, be expressed as

Icn = A+Bcos(Φ− 2πn

N
), (4.12)

where the two-dimensional camera coordinate (xc, yc) has been left out for brevity of

notation for the image terms Icn, A, B, and Φ. In Eq. (4.12), the parameter A is the

albedo image of the captured scene, which is derived according to

A =
1

N

N∑
n=1

Icn, (4.13)

while parameter B represents the amplitude of the observed Ipn reflected off the tar-

get [70], which is derived according to

B =
2

N

√√√√(
N∑
n=1

Icnsin(
2πn

N
))2 + (

N∑
n=1

Icncos(
2πn

N
))2. (4.14)

Finally, the parameter Φ represents the phase value at pixel location (xc, yc) of the

captured sinusoidal wave pattern, computed from the captured images as

Φ = atan

[∑N
n=1 I

c
nsin(2πn

N
)∑N

n=1 I
c
ncos(

2πn
N

)

]
, (4.15)

which in a noiseless system, can be calculated from N ≥ 3 patterns [70]. And once

the value of Φ is obtained, the 3-D world coordinates of a point can be calculated

from (xc, yc,Φ) as described by Li et al [74].

Noise Analysis

In practice, error in Icn is introduced from camera noise [74], projector gamma, flicker

and noise [45,84], ambient light noise [45] as well as other sources [74,85,86,87]. We

classify the error sources to projector gamma distortion [84], outside camera noise
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(including projector noise, flicker, ambient light noise and other noise sources outside

the camera), and camera noise. Thus, the captured images, Icn, in Eq. (4.12) can be

rewritten as

Ĩcn = A+Bcos(Φ− 2πn/N) + ρn + won + wcn, (4.16)

where ·̃ denotes the observed variable polluted by noise while the projected pattern is

of unit frequency with Φ ∈ [0, 2π). The parameter ρn is the error caused by projector

gamma distortion while the parameters wcn and won represent noise sources inside and

outside of the camera, respectively.

For conventional single view SLI systems, by synchronizing the projector and

camera that eliminates pattern flicker, as well as performing a thorough calibration

that eliminates gamma distortion [84], then Eq. (4.16) reduces to

Ĩcn = A+Bcos(Φ− 2πn/N) + ws, (4.17)

where we have the combined noise term ws = won + wcn. This simplified form then

represents that proposed by Li et al [74], Kamgar-Parsi and Kamgar-Parsi [85], and

Savarese et al [86] who further model ws as additive, white Gaussian noise, i.e.,

ws = wsn ∼ N(0, σ2). The phase value with noise, Φ̃, is then calculated as

Φ̃ = atan

[∑N
n=1 Ĩ

c
nsin(2πn

N
)∑N

n=1 Ĩ
c
ncos(

2πn
N

)

]

= atan

[
N
2
Bsin(Φ) +

∑N
n=1w

s
nsin(2πn

N
)

N
2
Bcos(Φ) +

∑N
n=1w

s
ncos(

2πn
N

)

]
. (4.18)

For real-valued numbers α and β, the following equation always exists,

atan(α)− atan(β) = atan(
α− β
1 + αβ

), αβ > −1 (4.19)
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by applying Eq. (4.19), Φe, in Eq. (4.23) is obtained:

Φe = Φ− Φ̃

= atan
[
sin(Φ)
cos(Φ)

]
− atan

[
N
2
Bsin(Φ)+

∑N

n=1
wcnsin( 2πn

N
)

N
2
Bcos(Φ)+

∑N

n=1
wcncos(

2πn
N

)

]

= atan(
2
N

∑N

n=1
wcnsin(Φ− 2πn

N
)

B+ 2
N

∑N

n=1
wcncos(Φ− 2πn

N
)
).

(4.20)

Further, we have

B̃2 = (Bsin(Φ) + 2
N

∑N
n=1 w

c
nsin(2πn

N
))2+

(Bcos(Φ) + 2
N

∑N
n=1w

c
ncos(

2πn
N

))2

= B2 + 4
N
B
∑N
n=1w

c
ncos(Φ− 2πn

N
)+

4
N2

∑N
n=1

∑N
m=1w

c
nw

c
mcos(

2π
N

(n−m))

= (B + 2
N

∑N
n=1w

c
ncos(Φ− 2πn

N
))2+

4
N2 [(

∑N
n=1 w

c
nsin(2πn

N
))2 + (

∑N
n=1w

c
ncos(

2πn
N

))2]−
4
N2 (

∑N
n=1w

c
ncos(Φ− 2πn

N
))2

= (B + 2
N

∑N
n=1w

c
ncos(Φ− 2πn

N
))2+

( 2
N

∑N
n=1 w

c
nsin(Φ− 2πn

N
))2.

(4.21)

Thus,

B̃ = {(B + 2
N

∑N
n=1w

c
ncos(Φ− 2πn

N
))2+

( 2
N

∑N
n=1w

c
nsin(Φ− 2πn

N
))2} 1

2 .
(4.22)

Thereby introducing the notion of phase error, Φe, given by

Φe = Φ− Φ̃ = atan
(
Y

X

)
. (4.23)

Furthermore, the noisy modulation image is given by

B̃ =
√
X2 + Y 2, (4.24)

where

X = B +
2

N

N∑
n=1

wsncos(Φ−
2πn

N
), (4.25)

and

Y =
2

N

N∑
n=1

wsnsin(Φ− 2πn

N
). (4.26)
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Distribution of Phase Error

Under the assumption of Gaussian noise, auxiliary variables X and Y are also Gaus-

sian, i.e. X ∼ N(B, 2
N
σ2) and Y ∼ N(0, 2

N
σ2). As their correlation can be estimated

by

E[XY ] = σ2
N∑
n=1

sin(2Φ− 4πn

N
) = 0, (4.27)

X and Y are independent. The joint Probability Density Function (PDF) of Φe and

B̃ is then given by

fB̃,Φe(b̃, φe) =
Nb̃

4πσ2
exp

[
−N (b̃)2 +B2 − 2b̃(Bcos(φe))

4σ2

]
, (4.28)

derived in [105]. Integrating Eq. (4.28) over B̃ yields the marginal PDF for Φe given

by

fΦe(φe) =
1

2π
exp

[
−NB

2

4σ2

] [
1 + κ

√
πexp(κ2)(1 + erf(κ))

]
, (4.29)

where

κ =

√
N

2

B

σ
cos(φe) (4.30)

and erf(·) is error function. In a given SLI system, Eq. (4.29) can be used to predict

the achievable accuracy.

Defining the SNR of a SLI system using PMP patterns as
√
NB√
2σ

, Fig. 4.11 shows the

PDFs of phase error, Φe, for different SNRs. It can be seen that an increase in pattern

number, N , or in modulation value, B, will reduce the phase error Φe. As such, the

modulation image, B, is typically used in many SLI scanning systems to define a

binary mask such that the pixel with sufficiently large B, (B(xc, yc) > threshold), is

considered to be reliable in determining that pixel’s phase, and it is only these pixels
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Figure 4.11: Probability density function of phase error.

that are used to reconstruct a 3-D surface. Figure 4.11 also demonstrates that the

PDF of Φe is a uniform distribution when the SNR is 0. Theoretically, this explains

the impulsive nature of noise observed in low B regions of a phase image, because Φ̃

can be far from the true phase value with the same probability.

For large SNRs where
√
NB can be considered much greater than

√
2σ, the phase

error will be small with the error function, of Eq. (4.30), close to 0. The second term,

κ
√
πexp(κ2)(1 + erf(κ)), will then dominate the constant 1 such that Eq. (4.29)

effectively reduces to

fΦe(φe) ≈
√
NBcos(φe)

2
√
πσ

exp

[
−NB2sin2(φe)

4σ2

]

≈
√
NB

2
√
πσ

exp

[
−NB2φ2

e

4σ2

]
, (4.31)

which demonstrates that the phase error distribution can be considered a zero-mean,

Gaussian distribution. As shown in Fig. 4.12, the Gaussian approximation is accurate

126



www.manaraa.com

for SNRs as small as 3.
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Figure 4.12: Probability density function of phase error Φe and its Gaussian approx-
imation with an SNR equal to 3.0.

Variances of Phase Error and Modulation

In order to derive the variance of Φe as it relates to the observed B̃ instead of the

true B, we denote µX and µY as the mean values of X and Y . And by integrating

Eq. (4.28) over Φe, we obtain the marginal PDF of B̃ as a Rician random variable

with distribution

fB̃(b̃) =
Nb̃

2σ2
exp

[
−N (b̃)2 +B2

4σ2

]
I0

(
Nb̃B

2σ2

)
b̃ ≥ 0, (4.32)

where I0(·) is the zero-th order modified Bessel function of the first kind. As the

SNR becomes bigger than 3, the PDF of modulation rapidly starts to approximate

the Gaussian distribution, with the variance σB expressed as

σ2
B =

2σ2

N
. (4.33)
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The second order moment of B̃ is then

E[(B̃)2] = B2 +
4σ2

N
, (4.34)

with an unbiased estimator of B given by:

B =

√
B̃2 − 4σ2

N
. (4.35)

Replacing B in Eq. (4.23) with this estimator, Φe becomes:

Φe = atan

 2
N

∑N
n=1w

s
nsin(Φ− 2πn

N
)√

B̃2 − 4σ2

N
+ 2

N

∑N
n=1w

s
ncos(Φ− 2πn

N
)

 . (4.36)

Because the noise value is much smaller than the value of modulation data, Eq. (4.36)

can be approximated as

Φe ≈
2

N
√
B̃2 − 4σ2

N

N∑
n=1

wsnsin(Φ− 2πn

N
), (4.37)

with the variance of Φe approximated by

σ2
Φ ≈

2σ2

N(B̃2 − 4σ2

N
)
. (4.38)

When high frequency patterns with frequency f are employed, the phase Φ is un-

wrapped into [0, 2π) before 3-D reconstruction [29, 74]. Thus, the phase error Φe is

divided by f so that Eq. (4.38) becomes

σ2
Φ ≈

2σ2

Nf 2(B̃2 − 4σ2

N
)
. (4.39)

So in summary, Eq. (4.39) and Eq. (4.33) characterize phase error and modulation

error with a Gaussian approximation, which we will later use in Sec. 4.3 in order to

refine the correspondence matching between cameras of a multi-view SLI system. The

PMP noise model, roughly from Eqs. (4.20) to (4.39), is derived by K. Liu in [126].
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4.3 Hybrid 3-D reconstruction

For the purpose of reconstructing 3-D surfaces by means of triangulating between

cameras of a multi-sensor SLI system using phase, modulation, and texture data,

our proposed hybrid construction algorithm is summarized by the steps of: (1) use

the phase data to derive an initial set of correspondences across cameras through

sub-pixel phase matching; (2) use texture data to reduce the likelihood of ambiguous

correspondences; (3) use the modulation data to characterize the phase error model

of Eq. (4.39); and (4) perform KL divergence analysis, based on the derived phase

error models, to reduce mis-registration among images. In the following description,

we assume that we are using a two-camera, single projector system in accordance

with the system used in Sec. 4.4.

Sub-pixel Phase Matching

Initially, the proposed process employs sub-pixel phase matching to match pixels

across camera images where a point with phase value Φ̃i at integer indexed location

P i = [mi, ni], in the first camera, is matched to the interpolated point with real

number indexed location P ii = (xii, yii), in the second camera, such that

Φ̃i[mi, ni] = Φ̃ii(xii, yii). (4.40)

For the purpose of sub-pixel matching, we assume that the phase value between pixels,

along an epipolar line, can be computed by means of bilinear interpolation as

Φ̃ii(xii, yii) = s1φ̃4 + s2φ̃3 + s3φ̃2 + s4φ̃1, (4.41)
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where Φ̃ii is the phase value of the point on the epipolar line, φ̃1 to φ̃4 are the phase

values of the four nearest-neighboring integer indexed pixels, and s1 to s4 are the

areas of the sub-pixel regions as illustrated in Fig. 4.13. The localization of the

matched point, P ii(xii ,yii), involves finding the phase value, Φ̃ii equals to Φ̃i, along

the epipolar line using Eq. (4.41).

4p

3p1p

2p

Epipolar
line

4S

1S 3S

2S

Figure 4.13: An epipolar line goes through the space between four image pixel centers.
s1+s2+s3+s4 = 1.

In situations like Fig. 4.14 (b) where sub-pixel phase matching results in multiple

pairings such that

{P ii
k |Φ̃ii

k = Φ̃i, k ≥ 2}, (4.42)

we rely on stereo-vision to identify the optimal pairing, kopt, as the one that results

in the highest similarity match in albedo images. For this purpose, we employ the

normalized cross-correlation (NCC) defined as

NCC(k; i, ii) =∑
g,h

(Ai(xi+g,yi+h)−Āi)(Aii(xiik +g,yiik +h)−Āiik )√∑
g,h

(Ai(xi+g,yi+h)−Āi)2(Aii(xii
k

+g,yii
k

+h)−Āii
k

)2
, (4.43)

where Āi and Āiik are the average intensity values of two windowed regions about a

particular pair given in Eq. (4.42). Therefore, kopt is the pairing that maximizes Eq.
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Figure 4.14: The phase value to be matched is Φ̃i. (a) In the area with low level
noise, only one point is matched. (b) In the area with high level noise, five points are
matched.

(4.43). The NCC can compensate for the difference in albedo for a given point in the

scene as recorded by two different camera sensors [127], at high computational cost.

There, it is only used for remove the phase correspondence ambiguities.
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Having eliminated phase-match ambiguities, Eq. (4.42) and Eq. (4.43) represent

a means to uniquely construct a 3-D surface based upon triangulation across cameras

that incorporates the principals of structured-light and stereo-vision.

Phase Matching Error

In the low SNR environments associated with smaller number of illumination patterns,

registration errors exist after sub-pixel phase matching due to having different phase

errors between the two cameras. For example, Fig. 4.15 shows matching results based

on phase data, where the accurate matching is derived from using 200 high frequency

PMP patterns (i.e. high SNR of
√
NB√
2σ

) while using only 3 high frequency patterns

(i.e. low SNR) leads to unreliable matching. It can be seen that registration error is

1.73 pixels.
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Figure 4.15: The phase value searching for is Φ̃i. The matching error is 1.27 pixels.

Ĩ in = A+Bcos(Φ− 2πn/N) + ρn + won + win (4.44)
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and

Ĩ iin = A+Bcos(Φ− 2πn/N) + ρn + won + wiin , (4.45)

where win and wiin are the respective noise terms within the two cameras. If we

assume that the cameras are rigorously synchronized and have near identical gamma

characteristics, as would be the case if the cameras were of identical manufacture and

model, then we expect ρn and won to be the same in both cameras. We, therefore,

denote ζn = ρn + won, and thus for the same point on the target surface, the phase

difference, Φd, between the two cameras can be derived as

Φd = Φ̃i − Φ̃ii

= atan

[
N
2
Bsin(Φ) +

∑N
n=1(win + ζn)sin(2πn

N
)

N
2
Bcos(Φ) +

∑N
n=1(win + ζn)cos(2πn

N
)

]

− atan

[
N
2
Bsin(Φ) +

∑N
n=1(wiin + ζn)sin(2πn

N
)

N
2
Bcos(Φ) +

∑N
n=1(wiin + ζn)cos(2πn

N
)

]

= atan
(

V

U + E

)
, (4.46)

where

U = B +
2

N

N∑
n=1

(win − wiin )cos(Φ− 2πn

N
), (4.47)

V =
2

N

N∑
n=1

(win − wiin )sin(Φ− 2πn

N
), (4.48)

and

E =
1

NB
(
N∑
n=1

(win + ζn)(wiin + ζn) + 2
N∑
n=1

N∑
m=1m 6=n

(win + ζn)(wiin + ζn)cos(
2π(n−m)

N
)). (4.49)
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Given a sufficiently large SNR (> 3), E is considerably smaller than the two parts in

U such that

Φd ≈ atan
(
V

U

)
, (4.50)

where the error caused by outside camera sources, ζn, is canceled out in the phase

matching result when using multiple cameras.

If we model the noise within each camera as additive, white, Gaussian noise, i.e.,

wi ∼ N(0, (σic)
2) and wii ∼ N(0, (σiic )2) [85, 86, 128], then the PDF of Φd would be

the same as Φe except that σ is replaced with
√

(σic)
2 + (σiic )2, noted as σc. Thus like

Eq. (4.39) with high frequency f , the variance of Φd is

σ2
Φd
≈ 2σ2

c

Nf 2((B̃i)2 − 4σ2
c

N
)
. (4.51)

Similarly, the variance of Bd is

σ2
Bd

=
2σ2

c

N
. (4.52)

Theoretically, comparison between Eqs. (4.39) and (4.51) proves that, in PMP-based

SLI systems, the multi-view system eliminates projector gamma distortion as well

as pattern flicker. Furthermore, we can expect a multi-view system, utilizing phase-

stereo matching, to outperform traditional single view SLI as long as the overall,

single-camera, SLI system’s noise is heavier than the summation of the camera noise,

e.g. σ2 > (σic)
2 + (σiic )2, in the two-camera system. This notion is reasonably true

as fewer noise sources are involved in multi-camera systems. In our experimental

system to be introduced in Sec. (4.4), the variance of the first camera and projector

pair, (σi)2, is 7.2827, whereas (σic)
2 and (σiic )2 are respectively 1.0410 and 1.1038.
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For a multi-view PMP-based SLI system, the error after sub-pixel phase matching is

characterized by Eq. (4.51) that we will employ for refinement.

KL Divergence Based Refinement

To overcome the 3-D matching difficulties presented in Fig. 4.15, utilizing the noise

models can improve the accuracy of registration between stereo pairs [129,130]. The

KL method can measure the divergence of the two camera’s phase distributions. As

discussed in Sec. 4.2, the two phase distributions can be approximated as Gaussian

with the observed values as means and variances calculated through Eq. (4.39). Thus

we can employ the KL method to build correspondence between camera images using

both phase and modulation information.

As originally proposed, KL divergence [118] measures the expected number of ex-

tra bits required to code samples from a random process P when using a code based

on random process Q, rather than using a code based on P itself. The process P typ-

ically represents the “true” distribution of data, or a precisely calculated theoretical

distribution, whereas the process Q typically describes an assumed approximation of

P.

So given two probability distributions P and Q and a set of M total samples from

each, the KL divergence between P and Q is derived as

DKL(P||Q) =
M∑
i=0

P(i)log
P(i)

Q(i)
. (4.53)

If P and Q are both Gaussian, then Eq. (4.58) simplified to

DKL(P||Q) =
1

2

2log

(
σQ
σP

)
+
σ2
P
σ2
Q

+
(µP − µQ)2

σ2
Q

− 1

 . (4.54)
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where µP and µQ are the mean values and σP and σQ are the variances.

For KL divergence based phase refinement, we intend to use our resulting phase

values to derive probability distributions, which we will then use to refine the stereo-

phase correspondences according to their KL distance apart. Specifically to measure

the distance in phase between the pair of points P i = [mi, ni] and P ii = (xii, yii),

we note that we can derive the Gaussian probability distribution P at P i using its

phase value Φ̃i and modulation value of B̃i, where µP = Φ̃i and σ2
P is calculated

by using Eq. (4.39). Likewise, we derive the Gaussian probability distribution Q at

P ii. Refining the phase correspondences also involves searching inside a small window

around P ii that minimizes its KL divergence from P i. Specifically, we search a set of

phase values within a range of 3σΦd to P ii along the epipolar line in camera II and

the point with the minimum KL divergence value is chosen as the matched one.
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Figure 4.16: Optimized weight function α with respect to modulation value B̃.

In order to normalize DKL(P||Q) to account for different units of Φ and B̃ where,
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for example, B̃ may range from 0 to 1.0 as a floating point variable or 0 to 255 as

an unsigned character or where Φ is in radians versus degrees, we introduce that

parameter α(·) into Eq. (4.54) as

DKL(P||Q) = 2log

(
σQ
σP

)
+
σ2
P
σ2
Q

+
α2(·)(µP − µQ)2

σ2
Q

, (4.55)

where α(·) is a weighting function that provides a means of balancing the influences

of phase and variance differences in P and Q on DKL(P||Q). In particular under the

assumption that

DKL(P i||P ii
1 ) = DKL(P i||P ii

2 ), (4.56)

for two points P ii
1 and P ii

2 where Φ̃ii
1 = Φ̃i ± 3σΦd while Φ̃ii

2 = Φ̃i and B̃ii
1 = B̃i while

B̃ii
2 = B̃i ± 3σBd such that both B̃ii

2 and Φ̃ii
1 are equally unreliable, then α(·) can be

pre-calculated as a function of B̃i, as demonstrated in Fig. 4.16 for the system used

in Sec. 4.4. Note that if we vary α(B̃i), either by increasing or decreasing it versus

the equality of Fig. 4.16, then we modulate the influence of Φ and B̃ and, thereby,

create a stereo-phase matching refinement step that favors one parameter over the

other.

4.4 Experimental results and discussion

To demonstrate the proposed stereo-phase matching with KL divergence refinement,

we developed a two-camera SLI system as shown in Fig. 4.17. It consists of an Infocus

LP70+ DLP projector with 1280 × 1024 pixel resolution and 1000 ANSI lumens

output coupled with two identical, 8-bit, monochrome Prosilica EC1280 cameras

with 1280×1024 pixel arrays. Camera I was set up 653 mm apart from the projector
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Figure 4.17: The prototype system setup for the hybrid 3-D reconstruction.

as the baseline for traditional SLI reconstruction, while camera II was placed in close

proximity to the projector at a distance of only 27 mm. The stereo-phase matching

is performed at a near equal triangulation angle to SLI, providing a fair basis for
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Figure 4.18: The experimental result to illustrate the project gamma distortion and
flicker.
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Figure 4.19: Reconstructed 3-D geometry of a textured flat board. To illustrate the
problems clearly, only the reconstruction of a rectangle region is zoomed in and shown.
(a) The board with rich texture under scanning. (b) The B image in the zoomed in
area. Part of the building and six people figures can be seen in the region. (c) Front
view of reconstruction result by using stereo-vision techniques (with the graph-cut
algorithm for 6 iterations). (d) Top view of (c). (e) Front view of reconstruction
result by using conventional SLI (with 3 high frequency PMP patterns). (f) Front
view of reconstruction result by using conventional SLI (with 30 high frequency PMP
patterns). (g) Front view of reconstruction result by using sub-pixel phase matching
(with 3 high frequency PMP patterns). (h) Front view of reconstruction result by
using the hybrid approach (with 3 high frequency PMP patterns). (i) Top view of (e).
(j) Top view of (f). (k) Top view of (g). (l) Top view of (h). Images (c), and (e) to
(h) are depth rendering images processed in the same way to show the reconstruction
errors.

performance comparison among different reconstruction methods. Look-up tables

were created to compensate the difference between two cameras from pixel-to-pixel

and to correct the optical distortion caused by the camera lenses [131]. The system
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was pre-calibrated to compute the reconstruction matrix and epipolar geometry as

discussed in [75,76].

The measured noise variance of the camera I to projector pair was 7.2827 while

the variances of the two cameras were measured separately at 1.0410 and 1.1038. As

discussed in Sec. (4.3), we expect phase-stereo matching between cameras I and II

to outperform traditional single view SLI between camera I and the projector since

their pairing noise is heavier than the summation of the two camera noises.

In order to show how the reconstruction quality using SLI is affected by the

projector configuration, we measured the joint gamma and flicker distortion of the

projector/camera pairs by projecting a series constant gray-scale images with consec-

utively increasing intensity values {Ipg : g = 0, 1, 2, ..., 255}. The resulting gray-level

intensities of the two cameras were then measured to produce the tone reproduction

curves of Fig. 4.18 where these nonlinear curves were caused by gamma distortion

with the local vibration due to the noise and flicker problems. This result shows that,

although heavy distortion exists in both cameras, the curves from the two cameras

are near identical.

Now in order to demonstrate the advantages of the hybrid approach over conven-

tional SLI with sub-pixel phase matching in the presence of gamma distortion, noise,

projector flicker, as well as an object’s texture and other effects, we performed a se-

ries of experiments beginning with scanning a textured, flat poster board (Fig. 4.19)

placed at approximately 1.5 meters away, where no gamma correction was performed

on the received images nor were the cameras rigorously synchronized to the projector.

The cameras, themselves, were synchronized in software with each other by means of
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a common fire wire bus connection to the host computer. Figure 4.19 (c) and (d) show

the surfaces produced by means of stereo-vision using Kolmogorov et al ’s graph-cut

algorithm [30] applied to the B images. Although the reconstructed results differ

significantly from the surfaces from Fig. 4.19 (e) to (l), they demonstrate that the

B images do provide information useful for 3-D reconstruction whereas traditional

stereo-vision would have matched the A images.

After having reconstructed the poster board’s surface by means of traditional

SLI, Fig. 4.19 (e) and (i) show the fringe pattern caused by the projector’s gamma

distortion. By employing 30 high frequency patterns, we can remove this fringe

pattern without performing any form of gamma correction as indicated in Fig. 4.19 (f)

and (j). While employing 30 patterns simultaneously reduced surface noise, there is

still noticeable ringing artifacts in areas of high contrast most noticeable around

step edges, which indicates the degrading effect caused by texture. And clearly in

Fig. 4.19 (f), regions with low B values exhibit increased high frequency surface

fluctuations due to Gaussian sensor noise.

Using sub-pixel phase matching, we achieve the reconstruction results of Fig. 4.19 (g)

and (k) as well as (e) and (h) where (g) and (k) were produced without KL diver-

gence refinement while (e) and (h) were produced with it. These results illustrate

the improved smoothness that we expected by triangulating across cameras versus

between camera and projector.

As a means of analysis, Fig. 4.20 shows a comparison of the disparity results using

3-pattern SLI and hybrid approaches. Since the quality of SLI depth reconstruction

depends entirely on phase, the disparity errors of SLI are caused by the projector
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imperfections proportional to their effect on phase. The SLI RMS registration error

is, in this instance, approximately 2.6979 pixels, whereas that of the hybrid approach

is only 0.1040 pixels or 1/26th that of conventional SLI. Figure 4.21 shows a further

comparison of the disparity results using sub-pixel phase matching with and without

KL divergence refinement. To illustrate the effect of modulation values, B is scaled

to [1, 2] and also plotted in Fig. 4.21. In Area 1 where B values have small changes,

the results with and without using divergence refinement contain errors of the same

level; however, in Area 2 where B values are changing rapidly, the hybrid approach

yields a smaller error. The overall RMS error is 0.1040 pixels with KL refinement

versus 0.1464 pixels without any refinement.
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Figure 4.20: Cross sections of reconstructed plane from SLI and hybrid algorithms.

To further test the performance of the sub-pixel phase matching with KL diver-

gence refinement versus traditional SLI, the target poster board was tilted away from

the sensor array at 15o increments while still using 3 high-frequency PMP patterns.
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Table 4.1: Experimental results using the SLI method

True Measured Relative Relative error
Pose Feature value value error to scene depth

v0(mm) v(mm) (∆v/v0,%) (∆v/Z,%)

0
H 458 456.8500 -0.2511 -0.0320
L 580 578.8127 -0.2047 -0.0271

1
H 458 459.6140 0.3524 0.0501
L 580 581.5967 0.2753 0.0391

2
H 458 459.6035 0.3501 0.0576
L 580 581.5347 0.2646 0.0435

Table 4.2: Experimental results using the phase matching method

True Measured Relative Relative error
Pose Feature value value error to scene depth

v0(mm) v(mm) (∆v/v0,%) (∆v/Z,%)

0
H 458 457.9557 -0.00967 -0.0012
L 580 579.9243 -0.01305 -0.0023

1
H 458 458.0916 0.020 0.0028
L 580 580.1563 0.02694 0.0054

2
H 458 458.0934 0.0204 0.0034
L 580 580.0900 0.01551 0.0037

Table 4.3: Experimental results using the hybrid algorithm

True Measured Relative Relative error
Pose Feature value value error to scene depth

v0(mm) v(mm) (∆v/v0,%) (∆v/Z,%)

0
H 458 458.0341 0.00745 0.0009
L 580 579.9455 -0.00940 -0.0017

1
H 458 458.0578 0.01261 0.0019
L 580 580.1063 0.01832 0.0037

2
H 458 458.0758 0.01654 0.0027
L 580 580.0684 0.01179 0.0028
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Figure 4.21: Cross sections of reconstructed plane from sub-pixel phase matching and
hybrid approaches.

The height (H) and length (L) (Fig. 4.19) of the board were then measured with

some typical results listed in Tables 1∼3, which show that 3-D measurement errors

from the SLI technique were 15 ∼ 33 times larger in magnitude than those using

the hybrid method, and the errors from phase matching were reduced 20% ∼ 37% by

employing hybrid. With only 3 patterns, the hybrid approach achieves an accuracy of

0.0009% ∼ 0.0037% in scene depth measurements. Correspondingly, the errors from

the hybrid reconstruction method are smaller than the state of the art approaches

in [76] and [77], and very close to the errors in [75] where at least nine patterns were

used.

So through the above experiments, we have demonstrated that, compared to tra-

ditional SLI, the hybrid reconstruction method is insensitive to phase errors deriving

from projector flicker as well as camera/projector gamma distortion, since the new
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Figure 4.22: (a) A textured cartoon giraffe and a white space shuttle model. (b),
(c) and (d) are zoomed-in and rotated views of (f), (g) and (h), respectively. (e)
Depth rendering reconstruction by using stereo vision technique (with the graph-
cut algorithm for 7 iterations). (f) Depth rendering reconstruction by using SLI
technique (with 3 high frequency PMP patterns). (g) Depth rendering reconstruction
by using SLI technique (with 30 high frequency PMP patterns). (h) Depth rendering
reconstruction by using the hybrid approach (with 3 high frequency PMP patterns).
(i), (j) and (k) are zoomed-in and rotated views of (f), (g) and (h).

method relies upon triangulation between camera sensors. Compared to sub-pixel

phase matching without refinement, employing KL divergence improves the result by

incorporating modulation information not previously exploited. The new approach

also exhibits little impact in areas of the target surface having high-contrast texture

since this texture is taken advantage of when identifying ambiguities in the phase

correspondences as well as for estimating the variance parameters for KL divergence,

which likewise identifies correspondences between camera images with higher preci-
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sion while being resilient to noise.

Now with regards to scanning smooth surfaces with little or no texture, we re-

constructed the 3-D surfaces of a rich textured cartoon giraffe along with a white

space shuttle model. Here, the surface of the giraffe is coarse whereas that of the

shuttle model is smooth. Again, separate 3-D reconstructions produced by means

of stereo-vision, SLI, and the sub-pixel phase matching with KL divergence refine-

ment, as illustrated shown in Figs. 4.22 (e), (f) and (h), respectively. For comparison,

Fig. 4.22 (g) illustrates the reconstructed surface obtained by means of traditional

SLI using 30 high frequency PMP patterns.

The giraffe’s surface in Fig. 4.22 (b) is distorted by gamma and significantly noisier

than by using the hybrid approach, as illustrated in Fig. 4.22 (d) and (h). By using

30 patterns, the surface in Fig. 4.22 (c) removes the gamma distortion; however,

small wrinkles indicate that the reconstructed surface is degraded by the texture of

the giraffe, where it can be seen that the phase quality is low. And since the hybrid

Figure 4.23: (a) A thick and shiny hair gorilla. (b) Depth rendering reconstruction
by using stereo-vision technique (with the graph-cut algorithm for 9 iterations). (c)
Depth rendering reconstruction by using conventional SLI technique (with 3 high
frequency PMP patterns). (d) Depth rendering reconstruction by using the proposed
hybrid approach (with 3 high frequency PMP patterns).
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approach utilizes this texture information to complement the degraded phase data,

sub-pixel phase matching with KL divergence refinement performs better.

Looking now at smooth textureless surfaces, the distortion in Fig. 4.22 (i) for

traditional SLI is dominated by gamma distortion, but even after eliminating this

distortion by using 30 patterns, Fig. 4.22 (j) still shows distortion caused by the

reflected light from the space shuttle body, which is illustrative of the multi-light-

path problem. By contrast, the hybrid approach greatly reduced this distortion in

Fig. 4.22 (k), further demonstrating the improved performance of the hybrid approach

in high and low textured environments in multi-light-path regions.

As the third example, we scanned a plush toy gorilla with thick and shiny hair

of varying color, where the depth contrast along some edges of hair was high while

the light path was complicated. The results shown in Fig. 4.23 were produced using

3, unit-frequency PMP patterns and demonstrate the reconstructions produced by

stereo-vision by means of graph-cuts [30], SLI, and the hybrid approach, respectively.

From visual inspection of Fig. 4.23 (c) and (d), the reconstructed result from SLI

is noisy and shows a significant amount of gamma distortion. We believe that the

heavy noise is mainly due to the projector’s flicker, the high contrast depth, and the

multi-light-path problem.

From Fig. 4.23 (b), it can be seen that the stereo-vision reconstruction suffers

little from the gamma distortion but shows significant errors caused by incorrect

registration. The reconstruction produced by the hybrid approach suffers little from

the gamma distortion, and has much improved registration, as shown in Fig. 4.23 (d).

Using this experiment, it can be seen that the hybrid approach is less sensitive to the
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projector’s distortion, the condition of rich texture, multiple light paths, and high

depth variation in terms of improved reconstruction performance over stereo-vision

and traditional SLI techniques.
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Figure 4.24: 3D visualization of Eq. (4.57) with f = 1, N = 3, (σi)2 = 7.2827, and
(σi)2 = 7.7925. In white area, SR>1. SR<1 in gray area. The modulation values, Bi

and Bii, are scaled to [0, 1].(a) The modulation values in camera I B̃i is 0.1. (b) B̃i

is 0.35. (c) B̃i is 0.5. (d) B̃i is 0.9.

With the help of texture and modulation data, the hybrid approach is robust to

phase data errors, yielding high quality 3-D reconstruction. Note that some high

quality projectors may introduce much less gamma and noise than the one we used

and that the flicker problem can be solved by rigorous synchronization between cam-
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eras and projector. However, our strict adherence to using the theoretical minimum

number of patterns where, regardless of the quality of hardware, the phase data qual-

ity tends to be poor. The hybrid approach improves the reconstruction performance

at the cost of added computation.

Discussion

In fact, KL divergence combines information of modulation and phase data. To

further study the performance of Eq. (4.55), we define the Sensitivity Ratio, SR, as

SR =

∣∣∣∣∣(∂DKL

∂B̃ii
)/(

∂DKL

∂Φ̃ii
)

∣∣∣∣∣
=

∣∣∣∣∣ 2

Nf 2α2∆Φ̃B̃ii

(
(σi)2

(B̃i)2
− (σii)2

(B̃ii)2

)
+

∆Φ̃

B̃ii

∣∣∣∣∣ , (4.57)

where ∆Φ̃ = Φ̃ii−Φ̃i. For different modulation and phase values, Eq. (4.57) indicates

whether Eq. (4.55) is more sensitive to the modulation value B̃ii or the phase value

Φ̃ii. When SR > 1 the KL divergence is more sensitive to B̃ii than Φ̃ii, and when

SR < 1 Φ̃ii dominates the KL value.

As shown in Fig. 4.24, for a given B̃i, the SR has values bigger than 1 when B̃ii

is small as the modulation information becomes more reliable than the phase. With

increased values of B̃i, as shown in Fig. 4.24 (a), (b), (c) and (d), more regions are

dominated by SR values smaller than 1, which means the KL divergence is more

sensitive to phase data as the phase information becomes more reliable. Figure 4.24

also shows that when B̃ii is very close to B̃i, SR reduces rapidly and phase information

dominates the KL, and when ∆Φ̃ goes to 0, SR grows fast and KL is dominated by

Φ̃ii. Thus, Eq. (4.55) actually trades off between phase and modulation information
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based on their reliability using different values of α.

In order to study the dependence of scan quality on pattern number, we measured

the scan errors of the hybrid approach and traditional SLI method, using the textured

poster board shown in Fig. 4.19, with different pattern numbers. The results in Fig.

4.25 show that the RMS disparity between SLI and hybrid approaches decreases as

the pattern number increases. The reconstruction errors of the hybrid approach are

smaller across the analyzed scale, especially for small pattern numbers, which we

listed in Table 4.4. The existence of error under high pattern numbers, we believe,

is mainly caused by calibration and inaccuracy of camera and projector models. As

most structured light systems in practice employ only a small number of patterns, it

can be concluded that the proposed hybrid approach has the great superiority in real

world applications of 3D reconstruction.

0 20 40 60 80 100

10
−1

10
0

Pattern Number

RM
S 

D
is

pa
rit

y 
Er

ro
r(

pi
xe

l)

 

 

Hybrid
SLI

Figure 4.25: RMS depth errors change with number of patterns.

Although our experiments were performed using only two cameras and one projec-
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Table 4.4: Error analysis for SLI and hybrid approaches

Pattern Error of SLI Error of hybrid
number ESLI(pixel) Ehybrid(pixel)

3 2.9859 0.1119
4 1.5644 0.1058
5 1.0435 0.1018
6 0.7719 0.0986

tor, the proposed stereo-phase matching approach can be extended to an N -camera,

M -projector system, where the patterns in the M projectors are well aligned through

pre-rectification, a process similar to camera rectification as presented in [132]. Ac-

cordingly, the N cameras would need to be positioned such that every neighboring

two cameras share some common regions. The phase, modulation, and texture infor-

mation obtained from these cameras would then be defined according to

I1 = {S1
1 , S

1
2 , ..., S

1
N}, (4.58)

where I1 notes the information of the first level. The hybrid approach would then be

applied in a bottom-up manner, as illustrated in Fig. 4.26.

At the first level, stereo-phase matching and refinement would be performed for

each pair of neighboring cameras, with the results passed on to the second level I2

where the registration result is converted to phase, modulation, and texture data,

which is then fused at higher levels. The final 3-D reconstruction is then a top-down

process, where 3-D surfaces exclusively obtained at the lower levels are attached to

the surfaces reconstructed at the higher levels.

This chapter presents a novel hybrid 3-D reconstruction approach for multi-camera

SLI systems. The major contribution of this chapter is to achieve high quality 3-D
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reconstructions with only a small number of illumination patterns by maximizing the

use of correspondence information from the phase, texture, and modulation data de-

rived from multi-view, PMP-based, SLI images. The proposed approach is insensitive

to gamma distortion and projector flicker that is, otherwise, present if the cameras

and projectors are not rigorously synchronized nor have the device gammas been cali-

brated. Experimental results show that the hybrid approach can achieve superior 3-D

reconstruction performances in rich/poor texture, multi-light path, and/or high/low

contrast environments regardless of the phase data quality. Specifically, we achieved

a 26× reduction in error compared to traditional SLI.
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1 S2

1 SN-1
1 SN

1

S1
2 SN-1

2Level 2

Level 1
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Figure 4.26: Pyramid generalization of the hybrid 3-D reconstruction approach to
multi-camera and multi-projector SLI systems. S2

1 represents the fused information
from the common region of S1

1 and S1
2 . SN−1

1 is the fused information from all cameras.
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Chapter 5 CONCLUSION AND FUTURE WORK

Structured light illumination (SLI) is a method of 3-D scanning that has been de-

veloping rapidly and applied in various domains. In this dissertation, we focused on

the phase shifting methods (PSMs) which involve projecting the same pattern, but

shifting it in a certain direction in order to increase resolution. Compared to other

approaches of SLI, the PSMs overcome the discrete nature of patterns and are robust

to object’s texture and ambient environment light. And due to the fact that the

pattern resolutions are exponentially increasing among the coarse-to-fine light pro-

jections and the fringe gap tends to 0, the resolution of PSMs is greatly improved.

However in practice, error is introduced from camera noise, projector noise, and am-

bient light noise as well as other sources. And these methods show large measurement

error because of noise, especially when only a few patterns are employed, as is the

case in real-time systems.

In this research, we focused on how to improve the accuracy of PSMs. There

are three major contributions of this dissertation. First, this dissertation studied

the specific technique of PMP and the maximization of a pattern’s SNR in Chap-

ter II. By treating the design of an N -pattern PMP process as placing points in an

N -dimensional coding space, we defined a pattern’s SNR in terms of a pattern set’s

computational length and the number of sinusoidal periods in the projected patterns.

Then, without introducing phase ambiguities, I proposed a so-called edge-pattern

strategy that maximizes the computational length and number of periods. Specifi-
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cally, the edge-pattern technique improves the SNR by 1.2381 times when using three

component patterns and 15.5421 times when using five patterns.

Experimental results demonstrate that by maximizing the computational length

and employing the non-ambiguous high frequency, the E-P strategy achieves a higher

SNR than the traditional PMP strategy. With more patterns, the pattern SNR

improvement increases further; however in practice, I noticed that the difference

between theoretical and experimental improvements also increases with the number

of patterns. This is caused, I believe, by the de-focus and resolution difference of the

projector and camera pair.

For future research of edge-pattern, I will further exploit the E-P strategy such

that the de-focus and resolution difference problems can be addressed. In experi-

ments, I noticed that when the number of patterns was 3, the edge-pattern was robust

to the de-focus and resolution difference. However, when the number of patterns was

larger than 3, the error appeared. Thus, I believe, some edges in the non-ambiguous

high frequency patterns introduces the sensitivity to de-focus and resolution differ-

ence. A possible solution to it is to reduce the non-ambiguous high frequency. Such

kind of trade-off reduces the theoretical accuracy of the patterns. However, in prac-

tice, it may avoid the error caused by de-focus and resolution difference such that the

theoretical and experimental accuracies would be close and the overall accuracy can

be improved.

A second contribution to SLI research made in this dissertation, presented in

Chapter III, was a period coded phase shifting pattern strategy where PSMs involve

projecting a set of grating patterns where measurement accuracy is determined, in
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part, by the number of grating periods. But by increasing the number of periods in the

projected pattern set, ambiguity problems are introduced during the process of phase

unwrapping. In order to eliminate these ambiguities, I defined a spatial intensity

efficiency measure that, for those pattern sets with a spatial intensity efficiency of less

than 100%. Without reducing the SNR of original high frequency signal, I encoded

the period cue into the projected pattern set such that each period, of the multi-

period pattern, is uniquely identifiable. This Chapter further introduced pattern

entropy as a separate measure from which one can optimize the embedded period cue.

In combination, the proposed method can unwrap high frequency phase information

and achieve high measurement precision without increasing the number of projected

patterns and, therefore, has significant benefits when scanning moving objects.

Further, in Chapter III, a noise model was introduced and verified by experiment,

in order to demonstrate the high measurement accuracy of the proposed approach.

Finally, a prototype system is demonstrated that can achieve 120 fps at 640 × 480

resolution for 3-D data acquisition and reconstruction, which demonstrates that the

computational cost of the proposed PCPS is low. For future research of this chapter,

I will further exploit the remaining dynamic range such that the accuracy of period

cue and the number of periods in the 3 pattern strategy can be improved. I will

also work on the optimization between the dynamic ranges of high frequency phase

signal and the period cue. Currently, the high frequency phase signal employs the

same dynamic range as the traditional PSMs. In order to achieve a high accuracy,

most PSMs occupy a large portion of the dynamic range such that the left for period

cue is generally small. Using such small dynamic range, the information can be
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embedded is also limited. In practice, it is possible that the dynamic range of the

original high frequency signal is reduced such that the range left for period cue can be

increased. It would reduce the accuracy of high frequency phase before unwrapping.

However, by doing so, the period cue becomes more accurate such that the frequency

can be further increased. Thus, the final phase used for 3-D reconstruction after

unwrapping is improved. The trade-off between the dynamic range of original high

frequency phase and that of period cue should be further studied and optimized in

order to achieve the highest accuracy of final unwrapped phase.

At last, a hybrid 3-D framework was developed in Chapter IV. The system com-

bines the SLI and stereo vision techniques. By employing multiple cameras, SLI can

generate pattern phase/modulation and object texture data. In Chapter IV, I first de-

veloped a new method to find the correspondence between the two cameras using both

the phase information generated by the temporal multiplexed illumination patterns

and stereo triangulation. I also analyzed the resulting correspondence accuracy as a

function of the number of structured patterns as well as the geometric position of pro-

jector to cameras. I then presented a hybrid 3-D reconstruction framework through

phase-modulation-texture data fusion under temporal multiplexed illumination. The

proposed scheme consists of, first, using phase data to derive initial correspondences

across cameras. Second, texture data is used to eliminate correspondence ambigui-

ties. Third, modulation data is used to estimate correspondence error ranges. Finally,

Kullback-Leibler divergence refinement, based on the derived phase error models, is

performed to reduce mis-registration among images. Using only a small number

of light patterns, the presented approach significantly reduces measurement errors
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versus traditional structured-light methodologies while being insensitive to gamma

distortion and projector flicker. Experimental results demonstrate these advantages

in terms of enhanced 3-D reconstruction performance and robustness against noise,

distortions, and conditions of texture and contrast. The future works for this chapter

include an extension of this approach to N -camera and M -projector SLI systems and

the development of single-pattern, multi-view, SLI systems. As studied by C. Guan

et. al. in [71], the single pattern PSM can be achieved by composing the multi-

ple patterns into one. However, in practice, the pattern becomes sensitive to noise.

Since the hybrid technique greatly improves the accuracy and robustness to noise,

it is possible that a satisfying 3-D reconstruction can be achieved by combining the

composite pattern and hybrid techniques. The pattern should be designed similar

to the method of composite pattern such that it would be robust to the albedo and

ambient light. And the phase changing direction should be along with the epipolar

geometry of N -camera system as studied in Chapter IV. Thus, although the quality

of obtained phase from each camera may be low, each camera introduces both phase

and albedo information and all the information can be employed through the hybrid

approach such that high quality 3-D reconstruction can be still achieved.

My future research should also include the reducing of the number of patterns for

PSMs. A triangulation pattern strategy has been proposed by Jia, which achieves

two patterns. However, this method is sensitive to the albedo of the scene and

the environment ambient light. In practice, the fact that two pattern or one pattern

PSM is hard to achieve mainly due to the low-pass filter effect of the captured images,

which can be caused by de-focus and resolution difference. To overcome the low pass
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filter effect, the differences between pixels should be improved. By the restriction

of epipolar line, it is possible for us to design a pattern, such that, in the captured

images, the projected intensities in a vertical or horizontal line are the same. Thus,

we can improve the differences between every neighboring vertical or horizontal lines

such that we can assume that the neighboring lines are not projected at the same time

but in two or even three projections. Then, the first estimated phase can be achieved

by using only one or two patterns. For example, we can fist assume the environment

ambient light is changing slowly on the object’s surface, which is generally true.

Then, we can obtain the phase by using only two patterns. After obtaining the initial

phase, the phase can be iteratively refined by removing the assumption and refining

the albedo and ambient light values. Thus, it becomes possible for us to develop

two or even one pattern’s PSM which would be robust to the environment light and

albedo of the scene.

3-D scanning is important to analyze a real-world object or environment. Some

different technologies can be used to build these 3D scanning devices, including stereo

vision, time of flight, and structured light illumination. Stereo vision usually employs

two video cameras and the 3-D information is revealed based on the differences be-

tween the images seen by each camera. The system is easy to set up but the accuracy,

compared with the other two, is low. The time-of-flight 3D scanner is an active scan-

ner that uses laser light to probe the subject. Currently, the time-of-flight 3D scanners

are drawing significant attention from the machine vision community because they

offer real-time operation. Thus, it becomes possible for many applications, for exam-

ple human and machine interface, to scan fast moving object and use the real-time
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3-D information. However, compared to the SLI technique, the time of flight scanner

has a lower resolution and accuracy. Among the 3-D scanning techniques, SLI has

played a fundamental role. By employing high resolution cameras, SLI can achieve

an ultra-high resolution and accuracy. But traditional SLI approaches require a set

of patterns projected in order to achieve the high accuracy. Thus, the scanning speed

is considerably low. If SLI is going to maintain a place in machine vision, it is going

to have to work at or near real-time video rates. Hence, my research particularly

focuses on the efficiency of patterns such that with less number of patterns the SLI

systems can get the same accuracy and the scanning time is then reduced. Three

different approaches are proposed in this dissertation with significant reduction of

the number of patterns. As the real-time operation becomes a demand on machine

vision systems, industry would have no choice to either adopt these three methods

or develop new methods that attempt to repeat what I have done with focusing on

pattern efficiency.
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